Atomistic modeling of carbon fibers: Structural characterization and mechanical properties

Kaushik Joshi, Mikhail Arefev and Leonid Zhigilei
University of Virginia

Multiscale Modeling of Carbon Materials
August 20, 2018, Charlottesville, Virginia
Outline

• Carbon fiber properties and its processing
• Atomistic simulations of carbon fiber: brief review
• Atomistic approach for generating 2D and 3D microstructures of carbon fibers
• Computational tools for characterization of carbon fiber microstructures
 o Hybridization state of carbon and ring analysis
 o X-ray diffraction, crystallite size
 o Pore size-pore volume distribution
 o Graphitic and turbostratic nature of carbon fiber
• Atomistic simulations for prediction of mechanical properties of carbon fiber
• Future plans
Carbon fiber for vehicle technologies

- Growing use in automobile, aircraft, space and military applications
- Attractive alternative to metals
 - Lightweight
 - High strength to weight ratio
 - Excellent tensile strength and fatigue resistance
 - Excellent corrosion resistance and chemically stable
- Can be produced from different precursors like Polyacrylonitrile (PAN), pitch and cellulose
 - Carbon fibers from PAN
 - Highest in quality and most widely used
 - Expensive and complex chemical processing
 - Fiber from other precursors is lower in cost, but inferior in mechanical properties when compared with PAN fiber
Chemical processing involves multiple steps like oxidation, cyclization, carbonization and graphitization.

Ladder-like intermediate structures formed which further link to create fiber microstructure.

Fiber microstructure and mechanical properties sensitive to precursor and chemistry.

How to use atomistic simulations to predict microstructure and mechanical properties of carbon fiber?

Atomistic simulations of carbon fiber chemistry and properties

- ReaxFF reactive molecular simulations to investigate chemistry of PAN derived fibers
 - Formation of carbon sheets from PAN polymer
 - Chemistry of formation of different gases like NH_3, H_2O, O_2
 - Interactions between CNT and carbon fiber (physisorption and chemisorption)

- Molecular simulations to investigate effect of structural faults on strength of PAN derived fibers
 - Strength of fiber decreases with increase in misalignment
 - Fracture initiation occurs near misoriented crystallites

Saha, Furmanchuk, Dzenis, Schatz; *Carbon*, 94, 1015
Penev, Artyukhov, Yakobson; *Carbon*; 85; 2015
Atomistic simulations of carbon fiber microstructure

- Simplified models that assume ladder-like structures formed during chemical processing
- Ladder-like structure with saturated (sp\(^2\)) and unsaturated (reactive) carbon atoms
 - Non-reactive MD simulation for 2D microstructure
 - Reactive atoms converted into sp\(^2\) by creating bonds based on distance and angle-based cut-offs

![Ladder unit with reactive and non-reactive carbon atoms](image)

Randomly placed ladders

Cross-section of simulated microstructure

HRTEM image of carbon fiber cross-section

Desai, Li, Shen, Strachan; *J. Chem. Phys.*; 2017, 147, 224705

Kumar, Anderson, Grasto; *J. Mat. Sci.*; 28, 1993

- XRD pattern in reasonable agreement with experiments
2D microstructure of carbon fibers: Reactive ladders

- Ladder-like structure with saturated and unsaturated (reactive) carbon atoms

\[
\begin{align*}
\text{sp}^2 \text{ C atom} & \quad \text{Reactive C atom} \\
\end{align*}
\]

800 ladder units placed inside periodic box using PACKMOL

- 2.5 nm \times 14.5 \text{ nm} \times 14.5 \text{ nm}
- \rho \approx 1.76 \text{ g/cm}^3

- Instead of selectively forming bonds, reactive NPT-MD simulation using AIREBO potential

\[
\begin{align*}
14.2 \text{ nm} \times 14.3 \text{ nm} & \quad \rho \approx 1.78 \text{ g/cm}^3 \\
\end{align*}
\]

Kumar, Anderson, Grasto; J. Mat. Sci.; 28, 1993

XRD from AIREBO simulation

Desai, Li, Shen, Strachan; J. Chem. Phys.; 2017, 147, 224705
2D microstructure of carbon fibers: Hydrogenated ladders

- Generating 3D microstructure with reactive ladders still a challenge

2D microstructure of carbon fiber can be generated using idealized hydrogenated ladders
Generating 3D microstructure using hydrogenated ladders

- Change size, shape and orientation of ladder units to obtain different microstructure samples
- Perform 300 K MD-NPT simulation to obtain starting configuration

L1
L2

Ladders aligned along x-axis
No rotational constraints during packing

L1_L2_ns_na

XY view

21.5 nm × 7.1 nm × 7.1 nm
ρ = 1.37 g/cm³

YZ view

L1_L2_ns_xa

XY view

20.2 nm × 7.5 nm × 7.5 nm
ρ = 1.39 g/cm³

YZ view
Generating 3D microstructure using hydrogenated ladders

L1_L2_s_xa

XY view

24.6 nm × 8.1 nm × 6.8 nm \(\rho = 1.33 \text{ g/cm}^3 \)

L1_L2_s_xyza

XY view

22.2 nm × 8.0 nm × 7.3 nm \(\rho = 1.39 \text{ g/cm}^3 \)
Generating 3D microstructure using ReaxFF ring structures

- ReaxFF reactive MD simulation on cyclization and carbonization of PAN (from Dr. van Duin’s group, PSU)
- Screen out carbon structures with rings, 5-, 6-, 7- and 9-member rings
Simulation procedure for generation of 3D microstructures of carbon fibers

- Increase temperature from 300 K to 900 K and pressure to 0.3 GPa (compression)
- Remove H atoms at 900 K in following steps
 - First, delete armchair H atoms and perform NPT-MD for 50 ps to allow ladders to link along longitudinal/axial direction, allow pressure to relax to 1 atm along X-direction
 - Then, delete zig-zag hydrogen atoms. Perform MD-NVT for 50 ps, relax pressure from 0.3 GPa to 1 atm in Y and Z-direction
- After removing all hydrogen atoms, perform annealing simulation at 1 atm
 - Heat from 900 K to 2000 K in 125 ps
 - MD-NPT at 2000 K for next 250 ps
 - Quench from 2000 K to 300 K in 200 ps
Changes in carbon fiber structure and chemical state during MD simulation

- Density increases by 23% during deletion and annealing of fiber structure
- Experimental fiber density 1.74 - 1.96 g/cm³
- Development of analysis tools
 - Builds connection table using domain decomposition approach (indirect graph of the system),
 - Identify sp, sp² and sp³ carbons
 - For identifying cycles/rings, modified form of Depth First Search (DFS) algorithm. Currently, maximum ring size set to 9 edges
- During deletion of H atoms, increase in density due to conversion of sp carbon into sp² carbon
- sp² to sp³ conversion during high temperature annealing, significant amount sp³ corresponds to cross-linking

![Graphs showing changes in density and sp² to sp³ conversion over time](image)

L1_L2_s_xa

- Graphs showing changes in density (ρ) and sp², sp³ carbon content over time (T (ps))
- Graphs showing evolution of 6-member and non-6-member rings over time (T (ps))
3D microstructures of carbon fibers

- Atoms that are part of only 6-member rings are colored as green. Atoms that have at least one non 6-member ring colored as blue.

![ReaxFF_structure](image1)

1.63 g/cm³

![L1_L2_ns_na](image2)

1.64 g/cm³

![L1_L2_ns_xa](image3)

1.82 g/cm³

![L1_L2_s_xa](image4)

1.80 g/cm³

![L1_L2_s_xyza](image5)

1.93 g/cm³
Microstructure characterization: XRD

- XRD for identifying crystal structure and crystallite size
- Calculate structure factor (SF) by integrating radial distribution function, $g(r)$

$$g(r) = \frac{1}{4\pi N r^2 \rho_0} \sum_{i,j} \delta(r - r_{ij})$$

$$SF(Q) = 1 + 4\pi \int_0^\infty (g(r) - 1) r^2 \sin \left(\frac{Qr}{Qr} \right) W(r) dr$$

- SF of aligned 3D microstructures show d_{002} peak which corresponds to interlayer separation in graphitic phase
- XRD in reasonable agreement with experiments
- Initial arrangement of ladders is important for generating better fiber samples

Kumar, Anderson, Grasto; J. Mat. Sci.; 28, 1993
Microstructure characterization: interlayer spacing d_{002} and crystallite size

- Identify d_{002} using Bragg’s law

$$d_{002} = \frac{\lambda}{2 \sin \theta}$$

- Calculate crystallite size (L_c) using Scherrer equation

$$L_c = \frac{\lambda}{\beta_s \cos \theta}$$

Measures crystallite size, L_c along planes d_{002}

β_s = full width at half peak maximum
θ = location of d_{002} peak

- Estimated d_{002} spacing higher than graphite (3.36 Å), indicates presence of turbostratic carbon

- For experimental samples with comparable densities (1.73-1.96 g/cm3), crystallite size varies in range of 14 - 48 Å

- Bigger samples might provide bigger crystals

<table>
<thead>
<tr>
<th>Microstructure</th>
<th>Density (g/cm3)</th>
<th>2θ</th>
<th>d_{002} (Å)</th>
<th>L_c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1_L2_ns_xa</td>
<td>1.82</td>
<td>24.91</td>
<td>3.64</td>
<td>12.96</td>
</tr>
<tr>
<td>L1_L2_s_xa</td>
<td>1.80</td>
<td>25.04</td>
<td>3.57</td>
<td>14.34</td>
</tr>
<tr>
<td>L2_L2_s_xyza</td>
<td>1.93</td>
<td>25.12</td>
<td>3.55</td>
<td>19.78</td>
</tr>
</tbody>
</table>
Microstructure characterization: pore size estimation

• Discretize simulated sample into rectangular grid, each cell 4Å × 4Å × 4Å (cell size can be varied if desired)
• Using atomic positions, identify empty cells and then perform cluster analysis to identify clusters of empty cells
• Tagged as a void only if two or more adjacent bins are empty

• Hard to estimate shape and size of voids from empty bin centers, additional analysis is needed
Microstructure characterization: pore size estimation

- To improving analysis further, identify edge bins of each void and then represent every void by edge surfaces.

[Diagram showing the process of identifying and connecting faces of voids and edge bins]
Microstructure characterization: pore size estimation

- To improving analysis further, identify edge bins of each void and then represent every void by edge surfaces

- Considerable amount of voids aligned along fiber axis

- Mixture of cylindrical voids and irregular shaped voids, bigger voids more likely irregular shaped
Microstructure characterization: pore size estimation

Snapshots of some individual voids

- Modified version of Breshenham’s line algorithm to identify pore size (commonly used for ray tracing in computer graphics)
- Faces of void edges used as extremities (can be replaced with atom coordinates closest to the face)

Characteristics:
- 0.4 nm³
- 0.9 nm³
- 6.1 nm³ (biggest void in sample)

Line passes through non-empty bins

Characteristic pore size
Microstructure characterization: Pore size distribution

<table>
<thead>
<tr>
<th>Microstructure</th>
<th>Density (g/cm³)</th>
<th>Maximum Pore Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1_L2_ns_na</td>
<td>1.64</td>
<td>4.4</td>
</tr>
<tr>
<td>L1_L2_ns_xa</td>
<td>1.82</td>
<td>6.0</td>
</tr>
<tr>
<td>L1_L2_s_xa</td>
<td>1.80</td>
<td>8.4</td>
</tr>
<tr>
<td>L1_L2_s_xyz</td>
<td>1.93</td>
<td>5.2</td>
</tr>
<tr>
<td>ReaxFF_structure</td>
<td>1.63</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Experimental pore size distribution

Ozcan, Vautard, Naskar; *Polymer Precursor-Derived Carbon*, 215; 2014
Microstructure characterization: Degree of graphitization

- Carbo fiber composed of graphitic and turbostratic carbon

\[
\text{Degree of graphitization, } g_p = \frac{d_{tc} - d_{002}}{d_{tc} - d_{gr}} \quad \text{ where: } \\
\begin{align*}
 d_{tc} &: \text{ d-spacing in turbostratic carbon} \\
 d_{002} &: \text{ d-spacing in graphite} \\
 d_{gr} &: \text{ d-spacing in graphite}
\end{align*}
\]

- Estimating d-spacing in turbostratic carbon is a challenge, varies in range 3.44 - 3.67 Å
- Alternatively, amount of graphitic carbon can be estimated using per atom energy

Hexagonal graphite crystal

- 3D microstructure was cooled to 1K
- Performed energy minimization for obtaining per atom energy
- Distribution obtained by calculating histogram with 100 bins

Energy of each carbon at 0K = -7.45 eV

Energy distribution for sample L1_L2_s_xa

- Per atom energy of C in graphite
Microstructure characterization: Degree of graphitization

- How to choose a cut-off for per atom energy for identifying graphitic carbon?
- Interaction energy as a function of interlayer separation in bilayer graphite

Interaction energy ≈ 30 meV

O’Connor, Andzelm and Robbins;
J. Chem. Phys; 142; 2015
Microstructure characterization: Degree of graphitization

- How to choose a cut-off for per atom energy for identifying graphitic carbon?
- Interaction energy as a function of inter-layer separation in bilayer graphite

Interaction energy ≈ 30 meV

Test 30 meV cut-off for ladder system (non-hydrogenated)

For ladder with stacked sheets, most of the carbon atoms get tagged as graphitic carbon

O’Connor, Andzelm and Robbins; *J. Chem. Phys*; 142; 2015
Microstructure characterization: Degree of graphitization

- How to choose a cut-off for per atom energy for identifying graphitic carbon?
- Interaction energy as a function of inter-layer separation in bilayer graphite

Interaction energy ≈ 30 meV

Test 30 meV cut-off for ladder system (non-hydrogenated)

For ladder with stacked sheets, most of the carbon atoms get tagged as graphitic carbon

For ladder with single sheet of carbon, no graphitic carbon

Energy cut-off of 30 meV reasonable for identifying graphitic phase in carbon fiber microstructures

O'Connor, Andzelm and Robbins; J. Chem. Phys; 142; 2015
Microstructure characterization: Degree of graphitization

- Graphitic carbon atoms shown by blue color. Other carbon atoms shown as transparent for visualization purposes

\[L1_{-}L2_{-}ns_{-}xa \]

\[L1_{-}L2_{-}s_{-}xa \]

\[L1_{-}L2_{-}s_{-}xyza \]

\[\text{turbostratic carbon} = \text{sp}^2 \text{ carbon} - \text{Graphitic carbon} \]

<table>
<thead>
<tr>
<th>Microstructure</th>
<th>Density (g/cm(^3))</th>
<th>% Graphitic carbon</th>
<th>% sp(^2) carbon</th>
<th>% Turbostratic carbon</th>
<th>(L_c (\text{Å}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1_{-}L2_{-}ns_{-}na)</td>
<td>1.82</td>
<td>14.7</td>
<td>92.7</td>
<td>78.0</td>
<td>12.96</td>
</tr>
<tr>
<td>(L1_{-}L2_{-}s_{-}xa)</td>
<td>1.80</td>
<td>18.5</td>
<td>92.5</td>
<td>74.0</td>
<td>14.34</td>
</tr>
<tr>
<td>(L1_{-}L2_{-}s_{-}xyza)</td>
<td>1.93</td>
<td>31.2</td>
<td>95.0</td>
<td>63.8</td>
<td>19.78</td>
</tr>
</tbody>
</table>

- Graphitization in generated microstructures within experimental range (2\%- 34\%)
- Higher degree of graphitization for structures with stacked ladders than non-stacked ladders
- Degree of graphitization increases with increase in alignment
- Degree of graphitization correlated with crystallite size
Estimating longitudinal tensile strength of 3D microstructure

- Tensile testing of simulated sample
- Longitudinal modulus by stretching in x-direction, strain rate of 2.5×10^8 s$^{-1}$
Estimating longitudinal tensile strength of 3D microstructure

<table>
<thead>
<tr>
<th>Microstructure</th>
<th>Density (g/cm³)</th>
<th>Tensile modulus (GPa)</th>
<th>Tensile strength (GPa)</th>
<th>Tensile strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1_L2_ns_xa</td>
<td>1.82</td>
<td>230.4</td>
<td>18.2</td>
<td>7.9</td>
</tr>
<tr>
<td>L1_L2_s_xa</td>
<td>1.80</td>
<td>262.5</td>
<td>16.8</td>
<td>6.4</td>
</tr>
<tr>
<td>L1_L2_s_xyza</td>
<td>1.93</td>
<td>280.8</td>
<td>14.6</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Experimental measurements on PAN fibers

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density (g/cm³)</th>
<th>Filament diameter (µm)</th>
<th>Tensile strength (MPa)</th>
<th>Tensile modulus (GPa)</th>
<th>Strain at break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS4</td>
<td>1.79</td>
<td>6.1</td>
<td>4330</td>
<td>231</td>
<td>1.8</td>
</tr>
<tr>
<td>T700</td>
<td>1.80</td>
<td>7.0</td>
<td>4900</td>
<td>230</td>
<td>2.1</td>
</tr>
<tr>
<td>T1000</td>
<td>1.80</td>
<td>5.0</td>
<td>6370</td>
<td>294</td>
<td>2.2</td>
</tr>
<tr>
<td>IM10</td>
<td>1.79</td>
<td>4.2</td>
<td>6964</td>
<td>310</td>
<td>2.0</td>
</tr>
<tr>
<td>UHMS</td>
<td>1.88</td>
<td>5.0</td>
<td>3730</td>
<td>440</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Predicted tensile modulus within experimental range, modulus increases with increase in stacking and alignment
- Both tensile strength and tensile strain are higher than experiments
- Both nonaligned structures have Young’s modulus that is at least 3x lower than other samples
- Stress-strain curve indicates different failure mechanics for nonaligned microstructures
Structure-property relationship in carbon fibers

• Current computational capabilities can calculate microstructure parameters and mechanical properties

<table>
<thead>
<tr>
<th>Microstructure</th>
<th>Density (g/cm³)</th>
<th>(d_{002}(\text{Å}))</th>
<th>(L_c(\text{Å}))</th>
<th>% Graphitic carbon</th>
<th>% (sp^2) carbon</th>
<th>% Turbostratic carbon</th>
<th>Maximum pore size (nm)</th>
<th>Tensile modulus (GPa)</th>
<th>Tensile strength (GPa)</th>
<th>Tensile strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1_L2_ns_xa</td>
<td>1.82</td>
<td>3.64</td>
<td>12.96</td>
<td>14.7</td>
<td>92.7</td>
<td>78.0</td>
<td>6.0</td>
<td>230.4</td>
<td>18.2</td>
<td>7.9</td>
</tr>
<tr>
<td>L1_L2_s_xa</td>
<td>1.80</td>
<td>3.57</td>
<td>14.34</td>
<td>18.5</td>
<td>92.5</td>
<td>74.0</td>
<td>8.4</td>
<td>262.5</td>
<td>16.8</td>
<td>6.4</td>
</tr>
<tr>
<td>L1_L2_s_xyza</td>
<td>1.93</td>
<td>3.55</td>
<td>19.78</td>
<td>31.2</td>
<td>95.0</td>
<td>63.8</td>
<td>5.2</td>
<td>280.8</td>
<td>14.6</td>
<td>5.2</td>
</tr>
</tbody>
</table>

• Identify structure-property relationship in carbon fibers
• In-depth analysis on failure mechanism of each microstructure
Hybrid MD-kMC for incorporating chemistry in microstructure generation

- Currently, developing kMC tool that will allow us to include chemistry into atomistic calculations
- As a first step, delete atoms based on distance criteria

Perform MD simulation → Calculate distances (r_{HH}) between all H pairs → If $r_{HH} < \text{cut_off}$, delete that pair

Current approach: Delete all H atoms at once

Hybrid MD-kMC approach: Delete only those H atoms for which $r_{HH} < \text{cut_off}$

Can be used to delete H_2, O_2, N_2, NO and NH species
Hybrid MD-kMC for incorporating chemistry in microstructure generation

- Starting structure consists of stacked, aligned ladders, simulation procedure similar to earlier approach up to heating to 900K
- For kMC, 1.8 Å cut-off distance for atom deletion, distance checking after every 2.5 ps of NPT-MD at 900 K

Starting configuration

Configuration after 620 ps

Future directions:
- In addition to distance cut-off, incorporate kinetic effects using Arrhenius equation, $k = \frac{-\Delta E}{kT}$
- Compare microstructures obtained from previous approach and from hybrid MD-kMC approach
- Perform simulations on ladder containing C, N, O and H atoms
Summary

• We have developed the computational framework for generating 3D realistic microstructures of carbon fibers

• Computational tools for characterizing microstructures:
 o Hybridization state of carbon and ring analysis
 o X-ray diffraction pattern, crystallite size and d-spacing
 o Pore size-pore volume distribution
 o Graphitic and turbostratic carbon

• Tested generated samples for mechanical properties like Young’s modulus, tensile strength and tensile strength

• Future directions
 o Identify the structure-property relationship and identify the mechanics of failure of different microstructures
 o Development of hybrid MD-kMC approach to incorporate reaction chemistry in generation of 3D microstructures from different precursors
Questions??