Isolated attosecond pulses for atomic and molecular physics

Mauro Nisoli

Politecnico di Milano, Department of Physics
Milano, Italy
Real-time observation and **direct control** of *electronic motion* in atoms, molecules, nanostructures and solids

Prerequisite
- Generation of attosecond pulses
- Attosecond metrology

Applications of attosecond pulses
- Status and prospects of attosecond spectroscopy and control
Tracing the motion of electrons in atoms

Bohr-model of hydrogen atom: electron in the ground state moves in a circular classical orbit around the nucleus in \(\sim 150 \) as.

Attosecond resolution is required
Tracing the motion of electrons in atoms

1s-2s coherent superposition in hydrogen

$T \approx 402 \text{ as}$

Attosecond resolution is required
Sub-femtosecond Pulses

T = 0.1 fs @ 30 nm
T = 2.5 fs @ 750 nm

Light pulses in the XUV are required for high-order harmonic generation.
An intense ultrashort light pulse is focused on a gas jet. Odd harmonics of the visible light are generated up to the soft-X-ray region. The intensity is described by the equation $E_{\text{max}} = I_p + 3.17 U_p$.
Attosecond Source: High-order Harmonic Generation

Step 1: Ionization
Step 2: Motion after ionization
Step 3: Recollision

maximum photon energy: $h \nu_{\text{max}} \propto I \lambda_L^{-2}$
“Intrinsic” tools in Attosecond Technology

- Attosecond optical pulses always associated to attosecond electron pulses
 - electrons give access to spatial resolution:
 - electron wavelength (~1Å)
 - optics gives electron collision physics a systematic method for measuring dynamics

- Attosecond photon or electron pulses always synchronized to a visible pulse with controlled waveform
 - extension of conventional ultrafast spectroscopy and strong field coherent control from the cycle-averaged into the sub-cycle domain of visible light
Basic “laser” tools for attosecond technology

Chirped-Pulse Amplification

Hollow-fiber compression
Sub-6-fs high-peak power light pulses

Ultrabroadband dispersion control with chirped mirrors

Carrier-envelope phase stabilization
T.W. Hansh et al., 1997,1999
Carrier-Envelope Phase (CEP)

\[E(t) = A(t) \cos(\omega_0 t + \psi) \]

- \(A(t) \): envelope
- \(\omega_0 \): carrier frequency
- \(\psi \): CEP
Isolated attosecond pulses

- Spectral selection of cutoff photons leads to generation of isolated attosecond pulses
- Requirements: sub-5-fs driving pulses (linear polarization)
Isolated attosecond pulses

- Spectral selection of cutoff photons leads to generation of one or two attosecond pulses
- Requirements: sub-5-fs phase-stabilized driving pulses (linear polarization)
Few-cycle linearly polarized pulses

- HHG in Neon: < 5 fs; stabilized CEP

→ Broad continuum only in the cut-off
Few-cycle linearly polarized pulses

- HHG in Neon: ~ 4 fs; stabilized CEP

Broad continuum
Temporal gating

Requirements: phase-stabilized driving pulses
Temporal gating schemes

- **Polarization gating:**
 - One- and two-color

- **Two-color gating:**
 - Intense IR pulses + intense visible (VIS) few-cycle pulses
 - Two IR pulses

- **Ionization gating:**
 - High-energy isolated pulses on target
Polarization gating

- Time-dependent polarization

Experimental results: Argon

- Pulse duration $\tau = 5$ fs; delay $\delta = 6.2$ fs; $\psi_0 < \psi < \psi_0 + 3\pi$

- Periodic change of amplitude and shape for $\Delta\psi = \pi$
- Continuous spectra from 30 eV to 55 eV for particular ψ
- CEP drives transition from double to single emission

Experimental results: Neon

- Pulse duration $\tau = 5$ fs; delay $\delta = 6.2$ fs; $\psi_0 < \psi < \psi_0 + 3\pi$

Strong periodic modulation of emission efficiency for $\Delta \psi = \pi$

Continuous spectra from 30 eV to 75 eV for all CEPs

Driving field: $\omega_1 + \omega_2$

$\omega_2 = 2 \omega_1 + \delta\omega$: spectrally detuned second harmonic

New periodicity of the electric field can lead to isolation of single attosecond pulses

Key parameters:
1. Central wavelength of the two components
2. Intensity of the pulses
3. Temporal overlap
4. Gas target position
Intense ultrashort two-color driver

Intense IR pulses: 1.45 μm, 20 fs, $I_{IR} = 2 \times 10^{14}$ W/cm2

Intense VIS pulses: 0.8 μm, 13 fs, $I_{VIS} = 8.5 \times 10^{14}$ W/cm2

$\tau = 0$: dramatic cutoff extension and continuum generation

outside overlapping region harmonic spectrum is dominated by VIS pulse

IR component: responsible for cutoff extension

VIS component: increase of conversion efficiency

Two-color vs one-color

Maximum photon energy with VIS: 100 eV
(high-conversion efficiency)

Maximum photon energy with IR: 140 eV
(low-conversion efficiency)

Maximum photon energy with VIS+IR: 160 eV
Ionization gating

\[\psi = 0 \]

High-energy few-cycle pulses:

- complete depletion of neutral atom population on the pulse leading edge
- confinement of the XUV emission within a single event

Requirements:

- few cycle pulses
- peak intensity > saturation intensity
- CEP control
- low gas pressure
- spatial filtering after the gas cell
XUV spectra vs CEP

- Pulse duration $\tau = 5$ fs; peak intensity 2.3×10^{15} W/cm2; 2.5-mm xenon cell

- Periodic change of amplitude and shape for $\Delta \psi = \pi$

- CEP drives transition from double to single emission

- Measured pulse energy on target 2.1 nJ

Attosecond Metrology
Far from any resonance, attosecond electron wavepacket is a replica of the attosecond field
Characterization of the electron wavepacket
1) Initial electron momentum

\[p_i = \sqrt{2mW_o} \quad W_o = \hbar \omega_{XUV} - I_p \]

2) Effect of streaking pulse

\[\Delta p(t) = e \int_{t}^{+\infty} E_{IR}(t') dt' = eA(t) \]

3) Final electron momentum

\[p_f(t) = p_i + \Delta p(t) \]

Electron energy:

\[W(t) \approx W_o + \sqrt{8mW_o} eA(t) \]

Kitzler et al. PRL 88,173903 (2002)
Itatani et al. PRL 88,173904 (2002)
Attosecond streak camera

We \(A(t) \)

e \(A(t) \)

time

Kitzler et al. PRL 88,173903 (2002)
Itatani et al. PRL 88,173904 (2002)
Attosecond streak camera

eA(t)

Kitzler et al. PRL 88,173903 (2002)
Itatani et al. PRL 88,173904 (2002)
Attosecond streak camera

eA(t)

Kitzler et al. PRL 88,173903 (2002)
Itatani et al. PRL 88,173904 (2002)
Attosecond streak camera

eA(t)
Attosecond Metrology

- Cross-correlation with driving light pulse

→ Photoelectron spectra vs delay
Temporal characterization

- 100-nm Aluminum filter

Positive chirp

Retrieved Intensity profile and phase

$\tau = 280$ as
Temporal characterization

- Dispersion compensation by Aluminum foils
 - 300-nm Aluminum filter

 ➜ Good dispersion compensation
 ➜ Near-single cycle pulse

Retrieved Intensity profile and phase

Applications of Attosecond Pulses
Applications of Attosecond Pulses

- Status and prospects of attosecond spectroscopy and control
 - isolated atoms: a few examples (Kr, Ne, Xe, He)
 - simple diatomic molecules: 1 example (H₂/ D₂)
 - condensed matter: 1 example (tungsten crystal)
 - complex (bio)molecules and supramolecular assemblies
 - nanostructures

- Use of synthesized (waveform-controlled) pulses to steer electrons in molecules on the electronic time scale
Charge migration in H$_2$/D$_2$

- **Method**: measurement of angular asymmetries in momentum distributions of fragments resulting from dissociative ionization

- Excitation of D$_2$ with isolated attosecond pulses in the presence of few-cycle IR laser field
 - observation of electron localization following attosecond molecular photoionization

![Diagram showing charge migration](image-url)
Velocity Map Imaging

- dual microchannel plate
- extractor
- repeller, gas injection

- very high collection efficiency (up to 100%)
- energy & angular information
Excitation by isolated attosecond pulses

Several pathways lead to dissociative ionization (XUV spectrum between 20 and 40 eV)

- < 1 eV: direct dissociative ionization via 1sσg state
- 0 - 10 eV (primarily 2-7 eV): auto-ionization of doubly excited Q1 state to 1sσg
- > 5 eV: direct excitation of 2pσu

1 – 8 eV: auto-ionization of Q2 state to 2pσu and 1sσg
Isolated as pulse + few-cycle IR pulse

- D$^+$ kinetic energy distribution vs time delay

Bond softening induced by IR pulse (maximum when bound WP is at the outer turning point of the potential curve)

IR-induced ionization of Q$_1$ states producing 2pσ_u state

increase of excitation cross-section of 2pσ_u continuum due to IR-induced mixing of 2pσ_u and 1sσ_g states

Electron localization in \(\text{D}_2 \)

- Asymmetry parameter:
 \[
 A(E_k, \tau) = \frac{N_L(E_k, \tau) - N_R(E_k, \tau)}{N_L(E_k, \tau) + N_R(E_k, \tau)}
 \]

- Asymmetry extending from 2 eV up to 10 eV
- \(A(E_k, \tau) \) oscillates with the periodicity of IR laser
- Phase of asymmetry oscillations depends on \(E_k \)

Electron localization

- Left-right asymmetry: coherent superposition of *gerade* and *ungerade* states
 - Relative phase between the two states leads to left/right electron localization

\[
|2p\sigma_u^+\rangle = \frac{1}{\sqrt{2}} (|1s\sigma_u^+\rangle + |2p\sigma_u^+\rangle)
\]

\[
|r\rangle = \frac{1}{\sqrt{2}} (|1s\sigma_u^+\rangle - |2p\sigma_u^+\rangle)
\]

- IR can cause an asymmetry either by changing the wave function of the continuum electron (I) or by changing the wave function of the molecular ion (II)
Localization mechanism I

A. XUV excitation of $2p\sigma_u$ state and interaction of IR pulse with photo-electron: redistribution of the wave function over several angular momentum states

B. auto-ionization of Q_1 state (or direct ionization): formation of a dissociative WP on the $1s\sigma_g$ state with p-electron emission

- quantum interference of the two WPs: localization of bound electron
- mechanisms restricted to the XUV-IR overlapping region
IR-induced population transfer between a WP on $2pσ_u$ state and $1sσ_g$ state

→ requires high intensity of IR pulse during the dissociation of the molecule
From diatomic to complex (bio)molecules

- Attosecond-scale electronic dynamics in molecules affect chemical changes

- When *charge migration* is the crucial step, the time-scale relevant to chemistry is set by electronic motion
 - electron delocalization in aromatic molecules
 - photosynthesis
 - long-range electron transfer in biomolecules
 - biological energy conversion processes

- Molecular electronics and molecular photovoltaics
 Control of electronic current in ever smaller semiconductor nanostructures and molecular systems
Charge migration in small peptides

- Charge localization by sudden ionization of small peptides: the resulting hole is localized and is not stationary (the stationary orbitals of the cation are delocalized).

Proposed Experimental Technique

Measure of kinetic energy distribution of photoelectrons released by a time-delayed sub-fs XUV pulse (250 as, 95 eV)
