The Dynamics of Classifying Geometric Structures

Bill Goldman

Department of Mathematics University of Maryland

Virginia Topology Conference 2016
Mapping Class Groups and Low Dimensional Topology
University of Virginia
Sunday 20 November 2016
Classification of geometric structures: A source of interesting dynamical systems
Classification of geometric structures:
A source of interesting dynamical systems

- Lie and Klein (1872): A \textit{geometry} in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A *geometry* in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A geometry in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.

Def $(G, X)(\Sigma)$ itself is locally modeled on $\text{Rep}(\pi_1(\Sigma), G)$

The $\text{Mod}(\Sigma)$-action on $\text{Def}(G, X)(\Sigma)$ corresponds to the $\text{Out}(\pi_1)$-action on $\text{Rep}(\pi_1(\Sigma), G)$.

This provides a source of interesting dynamical systems.
Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A *geometry* in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.
- Classifying such (G, X)-structures on Σ leads to an action of the *mapping class group* $\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))$ on a *deformation space* $\text{Def}_{(G, X)}(\Sigma)$ of (G, X)-structures.
Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A *geometry* in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.
- Classifying such (G, X)-structures on Σ leads to an action of the *mapping class group* $\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))$ on a *deformation space* $\text{Def}_{(G, X)}(\Sigma)$ of (G, X)-structures.
- $\text{Def}_{(G, X)}(\Sigma)$ itself is locally modeled on $\text{Rep}(\pi_1(\Sigma), G)$.
Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A geometry in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.
- Classifying such (G, X)-structures on Σ leads to an action of the mapping class group $\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))$ on a deformation space $\text{Def}_{(G,X)}(\Sigma)$ of (G, X)-structures.
- $\text{Def}_{(G,X)}(\Sigma)$ itself is locally modeled on $\text{Rep}(\pi_1(\Sigma), G)$.
- The $\text{Mod}(\Sigma)$-action on $\text{Def}_{(G,X)}(\Sigma)$ corresponds to the $\text{Out}(\pi)$-action on $\text{Rep}(\pi_1(\Sigma), G)$.
Classification of geometric structures:
A source of interesting dynamical systems

- Lie and Klein (1872): A *geometry* in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.
- Classifying such (G, X)-structures on Σ leads to an action of the *mapping class group* $\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))$ on a *deformation space* $\text{Def}_{(G, X)}(\Sigma)$ of (G, X)-structures.
- $\text{Def}_{(G, X)}(\Sigma)$ itself is locally modeled on $\text{Rep}(\pi_1(\Sigma), G)$.
- The $\text{Mod}(\Sigma)$-action on $\text{Def}_{(G, X)}(\Sigma)$ corresponds to the $\text{Out}(\pi)$-action on $\text{Rep}(\pi_1(\Sigma), G)$.
- This provides a source of interesting dynamical systems.
Coordinate atlases and development

Geometry: Homogeneous space $X = G / H$.

Topology: Topological manifold Σ with universal covering $\tilde{\Sigma} \to \Sigma$ and fundamental group π.

Marking: Homeomorphism $\Sigma \to M$; the geometry on M will vary, but the topology of Σ remains fixed.

Patches $U \subset M$; Coordinate atlas of charts $U \to X$ defining local coordinates on U modeled on X.

On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.

Charts globalize to immersion $\tilde{\Sigma} \to X$, equivariant respecting the holonomy homomorphism $\pi \to G$.

Holonomy globalizes coordinate changes.

$M(G, X)$-manifold, (M, f) marked (G, X)-structure on Σ.
Coordinate atlases and development

- **Geometry**: Homogeneous space $X = G/H$.

- **Topological Manifold** Σ with universal covering $\tilde{\Sigma} \to \Sigma$ and fundamental group π.

- **Marking**: Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.

- **Patches** $U \subset M$; Coordinate atlas of charts $U \to X$ defining local coordinates on U modeled on X.

- On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.

- Charts globalize to immersion $\tilde{\Sigma} \to X$, equivariant respecting the holonomy homomorphism $\pi \to G$.

- Holonomy globalizes coordinate changes.

- $M(G, X)$-manifold, $M(G, f)$ marked G-structure on Σ.

Coordinate atlases and development

- **Geometry**: Homogeneous space $X = G/H$.
- **Topology**: Topological manifold Σ with universal covering $\tilde{\Sigma} \rightarrow \Sigma$ and fundamental group π.

For overlapping patches, the change of coordinates are restrictions of transformations lying in G. Charts globalize to an immersion $\tilde{\Sigma} \rightarrow X$, equivariantly respecting the holonomy homomorphism $\pi \rightarrow G$. Holonomy globalizes coordinate changes.

$\textit{M}(G, X)$-manifold, $((\textit{M}, f))$-marked $((G, X))$-structure on Σ.
Coordinate atlases and development

- **Geometry:** Homogeneous space $X = G/H$.
- **Topology:** Topological manifold Σ with universal covering $\tilde{\Sigma} \rightarrow \Sigma$ and fundamental group π.
- **Marking:** Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
Coordinate atlases and development

- **Geometry**: Homogeneous space $X = G/H$.
- **Topology**: Topological manifold Σ with universal covering $\tilde{\Sigma} \rightarrow \Sigma$ and fundamental group π.
- **Marking**: Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches $U \subset M$; Coordinate atlas of charts $U \rightarrow X$ defining local coordinates on U modeled on X.

$M(G, X)$-manifold, (M, f) marked (G, X)-structure on Σ.
Coordinate atlases and development

- **Geometry**: Homogeneous space $X = G/H$.
- **Topology**: Topological manifold Σ with universal covering $\tilde{\Sigma} \to \Sigma$ and fundamental group π.
- **Marking**: Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches $U \subset M$; Coordinate atlas of charts $U \to X$ defining local coordinates on U modeled on X.
 - On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.

$M(G, X)$-manifold, (M, f)-marked (G, X)-structure on Σ.

Coordinate atlases and development

- **Geometry:** Homogeneous space $X = G/H$.
- **Topology:** Topological manifold Σ with universal covering $\tilde{\Sigma} \rightarrow \Sigma$ and fundamental group π.
- **Marking:** Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches $U \subset M$; Coordinate atlas of charts $U \rightarrow X$ defining local coordinates on U modeled on X.
 - On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.
 - Charts globalize to immersion $\tilde{\Sigma} \rightarrow X$, equivariant respecting the *holonomy homomorphism* $\pi \rightarrow G$.

 Coordinate atlases and development

- **Geometry**: Homogeneous space $X = G/H$.
- **Topology**: Topological manifold Σ with universal covering $\tilde{\Sigma} \to \Sigma$ and fundamental group π.
- **Marking**: Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches $U \subset M$; Coordinate atlas of charts $U \to X$ defining local coordinates on U modeled on X.
 - On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.
 - Charts globalize to immersion $\tilde{\Sigma} \to X$, equivariant respecting the *holonomy homomorphism* $\pi \to G$.
 - Holonomy globalizes coordinate changes.
Coordinate atlases and development

- **Geometry:** Homogeneous space $X = G/H$.

- **Topology:** Topological manifold Σ with universal covering $\tilde{\Sigma} \to \Sigma$ and fundamental group π.

- **Marking:** Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches $U \subset M$; Coordinate atlas of charts $U \to X$ defining local coordinates on U modeled on X.
 - On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.
 - Charts globalize to immersion $\tilde{\Sigma} \to X$, equivariant respecting the holonomy homomorphism $\pi \to G$.
 - Holonomy globalizes coordinate changes.

- $M (G, X)$-manifold, (M, f) marked (G, X)-structure on Σ.
Ehresmann-Weil-Thurston principle

Construct a deformation space of marked \((G, X)\)-structures on \(\Sigma\) up to appropriate equivalence relation.

Holonomy defines a mapping

\[
\text{Def}(G, X)(\Sigma) \rightarrow \text{Hom}(\pi_1(\Sigma), G) / \text{Inn}(G)
\]

Best cases (e.g. hyperbolic manifolds): stratify into smooth manifolds and \(H\) local diffeomorphism.

Changing the marking corresponds to an action of the mapping class group

\[
\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))
\]

on \(\text{Rep}(\pi, G)\) whose orbit structure defines the moduli space of \((G, X)\)-structures on \(\Sigma\).
Ehresmann-Weil-Thurston principle

- Construct a deformation space of marked \((G, X)\)-structures on \(\Sigma\) up to appropriate equivalence relation.

- Holonomy defines a mapping \(\text{Def}(G, X)(\Sigma) \rightarrow \text{Hom}(\pi_1(\Sigma), G)/\text{Inn}(G)\).

- Best cases (e.g. hyperbolic manifolds): stratify into smooth manifolds and \(H\) local diffeomorphism.

- Changing the marking corresponds to an action of the mapping class group \(\text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))\) on \(\text{Rep}(\pi, G)\) whose orbit structure defines the moduli space of \((G, X)\)-structures on \(\Sigma\).
Ehresmann-Weil-Thurston principle

- Construct a *deformation space* of marked \((G, X)\)-structures on \(\Sigma\) up to appropriate equivalence relation.
- Holonomy defines a mapping

\[
\text{Def}_{(G, X)}(\Sigma) \xrightarrow{\mathcal{H}} \text{Hom}(\pi_1(\Sigma), G)/\text{Inn}(G)
\]
Ehresmann-Weil-Thurston principle

- Construct a *deformation space* of marked \((G, X)\)-structures on \(\Sigma\) up to appropriate equivalence relation.
- Holonomy defines a mapping
 \[
 \text{Def}_{(G,X)}(\Sigma) \xrightarrow{\mathcal{H}} \text{Hom}(\pi_1(\Sigma), G)/\text{Inn}(G)
 \]
- Best cases (e.g. hyperbolic manifolds): stratify into smooth manifolds and \(\mathcal{H}\) local diffeomorphism.
Ehresmann-Weil-Thurston principle

- Construct a *deformation space* of marked \((G, X)\)-structures on \(\Sigma\) up to appropriate equivalence relation.
- Holonomy defines a mapping

 \[
 \text{Def}_{(G, X)}(\Sigma) \xrightarrow{\mathcal{H}} \text{Hom}(\pi_1(\Sigma), G)/\text{Inn}(G)
 \]

- Best cases (e.g. hyperbolic manifolds): stratify into smooth manifolds and \(\mathcal{H}\) local diffeomorphism.
- Changing the marking corresponds to an action of the *mapping class group*

 \[
 \text{Mod}(\Sigma) := \pi_0(\text{Homeo}(\Sigma))
 \]

on \(\text{Rep}(\pi, G)\) whose orbit structure defines the *moduli space* of \((G, X)\)-structures on \(\Sigma\).
Example of trivial (proper) dynamics: Hyperbolic surfaces

Suppose $X = H^2$ and $G = \text{Isom}(H^2) \cong \text{PGL}(2, \mathbb{R})$.

Then $\text{Def}(G, X)(\Sigma)$ is the Fricke space $F(\Sigma)$, which identifies with the Teichmüller space $T\Sigma$ by the uniformization theorem.

H embeds $F(\Sigma)$ as a connected component of $\text{Rep}(\pi, G)$:

Trivial dynamics: Action of Mod on $F(\Sigma)$ is proper. Its quotient is the Riemann moduli space $M\Sigma$ of smooth Riemann surfaces of fixed topology.

For $\Sigma = T^2$, the deformation space of unit-area Euclidean structures is the upper half-plane H^2 with action the modular group $\text{Mod}(\Sigma) \cong \text{GL}(2, \mathbb{Z})$ acting properly by linear fractional transformations.
Example of trivial (proper) dynamics: Hyperbolic surfaces

- Suppose $X = \mathbb{H}^2$ and $G = \text{Isom}(\mathbb{H}^2) \cong \text{PGL}(2, \mathbb{R})$.
Example of trivial (proper) dynamics: Hyperbolic surfaces

- Suppose $X = H^2$ and $G = \text{Isom}(H^2) \cong \text{PGL}(2, \mathbb{R})$.
- Then $\text{Def}_{G,X}(\Sigma)$ is the Fricke space $\mathcal{F}(\Sigma)$, which identifies with the Teichmüller space \mathcal{T}_Σ by the uniformization theorem.
Example of trivial (proper) dynamics: Hyperbolic surfaces

- Suppose $X = \mathbb{H}^2$ and $G = \text{Isom}(\mathbb{H}^2) \cong \text{PGL}(2, \mathbb{R})$.
- Then $\text{Def}_{(G,X)}(\Sigma)$ is the Fricke space $\mathcal{F}(\Sigma)$, which identifies with the Teichmüller space \mathcal{T}_Σ by the uniformization theorem.
- \mathcal{H} embeds $\mathcal{F}(\Sigma)$ as a connected component of $\text{Rep}(\pi, G)$:
Example of trivial (proper) dynamics: Hyperbolic surfaces

- Suppose $X = H^2$ and $G = \text{Isom}(H^2) \cong \text{PGL}(2, \mathbb{R})$.
- Then $\text{Def}_{(G, X)}(\Sigma)$ is the Fricke space $\mathcal{F}(\Sigma)$, which identifies with the Teichmüller space \mathcal{T}_Σ by the uniformization theorem.
- \mathcal{H} embeds $\mathcal{F}(\Sigma)$ as a connected component of $\text{Rep}(\pi, G)$:
- **Trivial dynamics:** Action of Mod on $\mathcal{F}(\Sigma)$ is proper. Its quotient is the Riemann moduli space \mathcal{M}_Σ of smooth Riemann surfaces of fixed topology.
Example of trivial (proper) dynamics: Hyperbolic surfaces

- Suppose $X = \mathbb{H}^2$ and $G = \text{Isom}(\mathbb{H}^2) \cong \text{PGL}(2, \mathbb{R})$.
- Then $\text{Def}_{(G, X)}(\Sigma)$ is the Fricke space $\mathcal{F}(\Sigma)$, which identifies with the Teichmüller space \mathcal{T}_Σ by the uniformization theorem.
- \mathcal{H} embeds $\mathcal{F}(\Sigma)$ as a connected component of $\text{Rep}(\pi, G)$:

 - **Trivial dynamics**: Action of Mod on $\mathcal{F}(\Sigma)$ is proper. Its quotient is the Riemann moduli space \mathcal{M}_Σ of smooth Riemann surfaces of fixed topology.

- For $\Sigma = T^2$, the deformation space of unit-area Euclidean structures is the upper half-plane \mathbb{H}^2 with action the modular group $\text{Mod}(\Sigma) \cong \text{GL}(2, \mathbb{Z})$ acting *properly* by linear fractional transformations.
Examples of nonproper dynamics

In contrast, the deformation space of complete affine structures on T^2 is homeomorphic to \mathbb{R}^2, with the Euclidean structures corresponding to the origin. (O. Baues 2000)

$\text{Mod}(T^2)$-action is usual linear action of $\text{GL}(2, \mathbb{Z})$ on \mathbb{R}^2.

This chaotic action admits no reasonable quotient.

Therefore, the classification of geometric structures is a dynamical system, since the moduli space (its quotient) is often intractable.
Examples of nonproper dynamics

In contrast, the deformation space of complete affine structures on T^2 is homeomorphic to \mathbb{R}^2, with the Euclidean structures corresponding to the origin. (O. Baues 2000)
Examples of nonproper dynamics

In contrast, the deformation space of complete affine structures on T^2 is homeomorphic to \mathbb{R}^2, with the Euclidean structures corresponding to the origin. (O. Baues 2000)

- Mod(T^2)-action is usual linear action of $\text{GL}(2, \mathbb{Z})$ on \mathbb{R}^2.
Examples of nonproper dynamics

- In contrast, the deformation space of complete affine structures on T^2 is homeomorphic to \mathbb{R}^2, with the Euclidean structures corresponding to the origin. (O. Baues 2000)
 - Mod(T^2)-action is usual *linear action* of $\text{GL}(2, \mathbb{Z})$ on \mathbb{R}^2.
 - This chaotic action admits no reasonable quotient.
In contrast, the deformation space of complete affine structures on T^2 is homeomorphic to \mathbb{R}^2, with the Euclidean structures corresponding to the origin. (O. Baues 2000)

$\text{Mod}(T^2)$-action is usual linear action of $\text{GL}(2, \mathbb{Z})$ on \mathbb{R}^2.

This chaotic action admits no reasonable quotient.

Therefore, the classification of geometric structures is a dynamical system, since the moduli space (its quotient) is often intractable.
Symplectic/Poisson structure

When adjoint representation of G is orthogonal (e.g. if G is reductive), then $\text{Rep}(\pi, G)$ admits a $\text{Mod}(\Sigma)$-invariant symplectic structure extending:

- Weil-Petersson Kähler form on Teichmüller component for $G = \text{SL}(2, \mathbb{R})$;
- Narsimhan-Atiyah-Bott Kähler form for $G = \text{SU}(2)$.

(Narasimhan-Seshadri moduli space of semistable bundles.)

When $\partial \Sigma \neq \emptyset$, then $\text{Rep}(\pi, G)$ inherits a Poisson structure with restriction mapping $\text{Rep}(\pi, G) \rightarrow \text{Rep}(\pi_1(\partial \Sigma), G)$ as universal Casimir. The level sets (relative character varieties) are its symplectic leaves.
Symplectic/Poisson structure

- When adjoint representation of G is orthogonal (e.g. if G is reductive), then $\text{Rep}(\pi, G)$ admits a $\text{Mod}(\Sigma)$-invariant symplectic structure extending:
 - The Weil-Petersson Kähler form on Teichmüller component for $G = \text{SL}(2, \mathbb{R})$;
 - The Narasimhan-Atiyah-Bott Kähler form for $G = \text{SU}(2)$.
 (Narasimhan-Seshadri moduli space of semistable bundles.)

- When $\partial \Sigma \neq \emptyset$, then $\text{Rep}(\pi, G)$ inherits a Poisson structure with restriction mapping $\text{Rep}(\pi, G) \to \text{Rep}(\pi_1(\partial \Sigma), G)$ as universal Casimir. The level sets (relative character varieties) are its symplectic leaves.
Symplectic/Poisson structure

- When adjoint representation of G is orthogonal (e.g. if G is reductive), then $\text{Rep}(\pi, G)$ admits a $\text{Mod}(\Sigma)$-invariant symplectic structure extending:
 - Weil-Petersson Kähler form on Teichmüller component for $G = \text{SL}(2, \mathbb{R})$;
Symplectic/Poisson structure

▶ When adjoint representation of G is orthogonal (e.g. if G is reductive), then $\operatorname{Rep}(\pi, G)$ admits a $\operatorname{Mod}(\Sigma)$-invariant symplectic structure extending:
 ▶ Weil-Petersson Kähler form on Teichmüller component for $G = \operatorname{SL}(2, \mathbb{R})$;
 ▶ Narsimhan-Atiyah-Bott Kähler form for $G = \operatorname{SU}(2)$. (Narasimhan-Seshadri moduli space of semistable bundles.)
Symplectic/Poisson structure

- When adjoint representation of G is orthogonal (e.g. if G is reductive), then $\text{Rep}(\pi, G)$ admits a $\text{Mod}(\Sigma)$-invariant symplectic structure extending:
 - Weil-Petersson Kähler form on Teichmüller component for $G = \text{SL}(2, \mathbb{R})$;
 - Narsimhan-Atiyah-Bott Kähler form for $G = \text{SU}(2)$. (Narasimhan-Seshadri moduli space of semistable bundles.)
- When $\partial \Sigma \neq \emptyset$, then $\text{Rep}(\pi, G)$ inherits a Poisson structure with restriction mapping

\[
\text{Rep}(\pi, G) \longrightarrow \text{Rep}(\pi_1(\partial \Sigma), G)
\]

as universal Casimir. The level sets (relative character varieties) are its symplectic leaves.
Ergodicity for compact groups

When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.

Mod(Σ)-action ergodic on each component $\text{Rep}(\pi, G)$ with respect to the symplectic measure. (G-, Pickrell-Xia)

(Palesi) Ergodicity for closed nonorientable surfaces of $\chi \leq -2$ and $G = SU(2)$.

Weak-mixing: Only finite-dimensional Mod(Σ)-invariant subspaces on $L^2(\text{Rep}(\pi, G))$ are locally constant functions (trivial subrepresentations).

Weak-mixing on $\text{Rep}(\pi, G)$ equivalent to ergodicity on square $\text{Rep}(\pi, G) \times \text{Rep}(\pi, G) = \text{Rep}(\pi, G \times G)$.
Ergodicity for compact groups

- When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.

Weak-mixing: Only finite-dimensional $\text{Mod}(\Sigma)$-invariant subspaces on $L^2(\text{Rep}(\pi, G))$ are locally constant functions (trivial subrepresentations).

Weak-mixing on $\text{Rep}(\pi, G)$ equivalent to ergodicity on $\text{square Rep}(\pi, G) \times \text{Rep}(\pi, G) = \text{Rep}(\pi, G \times G)$,
Ergodicity for compact groups

▶ When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.

▶ $\text{Mod}(\Sigma)$-action ergodic on each component $\text{Rep}(\pi, G)^\alpha$ with respect to the symplectic measure. (G-, Pickrell-Xia)
When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.

Mod(Σ)-action ergodic on each component $\text{Rep}(\pi, G)^\alpha$ with respect to the symplectic measure. (G-, Pickrell-Xia)

(Palesi) Ergodicity for closed nonorientable surfaces of $\chi \leq -2$ and $G = \text{SU}(2)$.
Ergodicity for compact groups

- When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.
- Mod(Σ)-action ergodic on each component $\text{Rep}(\pi, G)^\alpha$ with respect to the symplectic measure. (G-, Pickrell-Xia)
- (Palesi) Ergodicity for closed nonorientable surfaces of $\chi \leq -2$ and $G = \text{SU}(2)$.
- Weak-mixing: Only finite-dimensional Mod(Σ)-invariant subspaces on $L^2(\text{Rep}(\pi, G))$ are locally constant functions (trivial subrepresentations).
Ergodicity for compact groups

- When G is compact and then the components of $\text{Rep}(\pi, G)$ are indexed by $\alpha \in \pi_1([G, G])$.
- $\text{Mod}(\Sigma)$-action ergodic on each component $\text{Rep}(\pi, G)^\alpha$ with respect to the symplectic measure. (G-, Pickrell-Xia)
- (Palesi) Ergodicity for closed nonorientable surfaces of $\chi \leq -2$ and $G = \text{SU}(2)$.
- **Weak-mixing**: Only finite-dimensional $\text{Mod}(\Sigma)$-invariant subspaces on $L^2(\text{Rep}(\pi, G))$ are *locally constant* functions (trivial subrepresentations).
 - Weak-mixing on $\text{Rep}(\pi, G)$ equivalent to ergodicity on square

 \[\text{Rep}(\pi, G) \times \text{Rep}(\pi, G) = \text{Rep}(\pi, G \times G), \]
Continuous version of Mapping Class Group Action

Replace dynamics of action of discrete group $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by continuous dynamical object, a family of moduli spaces, over Teichmüller space \mathcal{T}_Σ.

(Narasimhan-Seshadri 1965, . . . , Hitchin 1987): When $\Sigma \to M$ is a marked Riemann surface, then the symplectic object $\text{Rep}(\pi, G)$ inherits richer structure corresponding to reducing of structure group of $\text{Rep}(\pi, G)$ to maximal compact of symplectic group.
Continuous version of Mapping Class Group Action

Replace dynamics of action of discrete group $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by continuous dynamical object, a family of moduli spaces, over Teichmüller space \mathcal{T}_Σ.

(Narasimhan-Seshadri 1965, . . ., Hitchin 1987): When $\Sigma \to M$ is a marked Riemann surface, then the symplectic object $\text{Rep}(\pi, G)$ inherits richer structure corresponding to reducing of structure group of $\text{Rep}(\pi, G)$ to maximal compact of symplectic group.

▶ G is compact: $\text{Rep}(\pi, G)$ inherits Kähler structure compatible with symplectic structure. ($\text{Sp}(2N, \mathbb{R}) \supset U(N)$)
Continuous version of Mapping Class Group Action

Replace dynamics of action of discrete group Mod(Σ) on Rep(π, G) by continuous dynamical object, a family of moduli spaces, over Teichmüller space \(\mathcal{T}_\Sigma \).

(Narasimhan-Seshadri 1965, . . ., Hitchin 1987): When \(\Sigma \to M \) is a marked Riemann surface, then the symplectic object Rep(\(\pi \), G) inherits richer structure corresponding to reducing of structure group of Rep(\(\pi \), G) to maximal compact of symplectic group.

- **G** is compact: Rep(\(\pi \), G) inherits Kähler structure compatible with symplectic structure. \((\text{Sp}(2N, \mathbb{R}) \supset U(N))\)

- **G** complex: Rep(\(\pi \), G) inherits hyper-Kähler structure compatible with complex-symplectic structure.\((\text{Sp}(2N, \mathbb{C}) \supset \text{Sp}(2N))\)
The universal moduli space over Teichmüller space.
The universal moduli space over Teichmüller space.

- Flat $\text{Rep}(\pi, G)$- bundle $\mathcal{E}_\Sigma(G)$ over \mathcal{M}_Σ parametrizes these structures as the Riemann surface M varies:

$$\mathcal{E}_\Sigma(G) := (\mathcal{I}_\Sigma \times \text{Rep}(\pi, G))/\text{Mod}(\Sigma)$$

$$\mathcal{M}_\Sigma := \mathcal{I}_\Sigma/\text{Mod}(\Sigma)$$
The universal moduli space over Teichmüller space.

- Flat $\text{Rep}(\pi, G)$- bundle $\mathcal{E}_\Sigma(G)$ over \mathcal{M}_Σ parametrizes these structures as the Riemann surface M varies:

$$\mathcal{E}_\Sigma(G) := (\mathcal{T}_\Sigma \times \text{Rep}(\pi, G))/\text{Mod}(\Sigma)$$

$$\mathcal{M}_\Sigma := \mathcal{T}_\Sigma/\text{Mod}(\Sigma)$$

- Leaves of horizontal foliation $\mathcal{F}(\rho) := [\mathcal{T}_\Sigma \times \{[\rho]\}]$ correspond to $\text{Mod}(\Sigma)$-orbit $\text{Mod}(\Sigma)[\rho]$ on $\text{Rep}(\pi, G)$.
The universal moduli space over Teichmüller space.

- Flat $\text{Rep}(\pi, G)$- bundle $\mathcal{E}_\Sigma(G)$ over \mathcal{M}_Σ parametrizes these structures as the Riemann surface M varies:

 $\mathcal{E}_\Sigma(G) := (\mathcal{I}_\Sigma \times \text{Rep}(\pi, G))/\text{Mod}(\Sigma)$

 $\mathcal{M}_\Sigma := \mathcal{I}_\Sigma/\text{Mod}(\Sigma)$

- Leaves of horizontal foliation $t\mathcal{F}(\rho) := [\mathcal{I}_\Sigma \times \{[\rho]\}]$ correspond to $\text{Mod}(\Sigma)$-orbit $\text{Mod}(\Sigma)[\rho]$ on $\text{Rep}(\pi, G)$.

- Dynamics of \mathcal{F} equivalent to dynamics of action of discrete group $\text{Mod}(\Sigma)$.
Extending Teichmüller flow

Now replace dynamics of \(\text{Mod}(\Sigma) \) on \(\text{Rep}(\pi, G) \) by a measure-preserving flow \(\Phi \) on flat bundle \(U_E \Sigma(G) \).

Teichmüller unit sphere bundle \(U_M \Sigma \) over \(M \Sigma \) with Teichmüller geodesic flow \(\phi : U_M \Sigma := (U_T \Sigma) / \text{Mod}(\Sigma) \) invariantly stratified by strata \(U_M \sigma \Sigma \), indexed by partitions \(\sigma \) of \(4g - 4 \), corresponding to zeroes of quadratic differentials.

Insert \(\text{Rep}(\pi, G) \) as the fiber:
\[
U_{E \sigma} := (U_T \Sigma) \times \text{Rep}(\pi, G) \alpha / \text{Mod}(\Sigma)
\]

Horizontally lift \(\phi \) to flow \(\Phi \) on \(U_{E \sigma} \).

Teichmüller dynamics on \(U_M \Sigma \) extends to \((U_{E \sigma}, \Phi) \).

\(\text{Mod}(\Sigma) \)-dynamics on \(\text{Rep}(\pi, G) \) replaced by equivalent action of more tractable group \(\mathbb{R} \) (or even \(\text{SL}(2, \mathbb{R}) \)).

(Forni – G) When \(G \) is compact, then the flow \(\Phi \) is mixing (and thus ergodic) on \(U_{E \sigma} \).
Extending Teichmüller flow

- Now replace dynamics of $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by a measure-preserving flow Φ on flat bundle $U\mathcal{C}_\Sigma(G)$.

- Horizontally lift ϕ to flow Φ on $U\mathcal{C}_\Sigma(G)$.

- Teichmüller dynamics on $U\mathcal{M}_\Sigma$ extends to $(U\mathcal{C}_\Sigma(G), \Phi)$.

- $\text{Mod}(\Sigma)$-dynamics on $\text{Rep}(\pi, G)$ replaced by equivalent action of more tractable group R (or even $\text{SL}(2, \mathbb{R})$).

- (Forni – G) When G is compact, then the flow Φ is mixing (and thus ergodic) on $U\mathcal{C}_\Sigma(G)$.
Extending Teichmüller flow

- Now replace dynamics of \(\text{Mod}(\Sigma) \) on \(\text{Rep}(\pi, G) \) by a measure-preserving flow \(\Phi \) on flat bundle \(UE_\Sigma(G) \).

- Teichmüller unit sphere bundle \(U_M \Sigma \) over \(M_\Sigma \) with Teichmüller geodesic flow \(\phi \):

\[
U_M \Sigma := (U T_\Sigma) / \text{Mod}(\Sigma) \\
M_\Sigma := T_\Sigma / \text{Mod}(\Sigma)
\]

invariantly stratified by strata \(U M_\Sigma^\sigma \), indexed by partitions \(\sigma \) of \(4g - 4 \), corresponding to zeroes of quadratic differentials.
Extending Teichmüller flow

- Now replace dynamics of $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by a measure-preserving flow Φ on flat bundle $U\mathcal{E}_\Sigma(G)$.
 - Teichmüller unit sphere bundle $U\mathcal{M}_\Sigma$ over \mathcal{M}_Σ with Teichmüller geodesic flow ϕ:

$$U\mathcal{M}_\Sigma := (U\mathcal{T}_\Sigma) / \text{Mod}(\Sigma)$$

$$\mathcal{M}_\Sigma := \mathcal{T}_\Sigma / \text{Mod}(\Sigma)$$

invariantly stratified by strata $U\mathcal{M}_\Sigma^\sigma$, indexed by partitions σ of $4g - 4$, corresponding to zeroes of quadratic differentials.
 - Insert $\text{Rep}(\pi, G)^\alpha$ as the fiber:

$$U\mathcal{E}_\Sigma(G)^{\sigma, \alpha} := ((U\mathcal{T}_\Sigma)^\sigma \times \text{Rep}(\pi, G)^\alpha) / \text{Mod}(\Sigma)$$
Extending Teichmüller flow

- Now replace dynamics of $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by a measure-preserving flow Φ on flat bundle $U\mathcal{E}_\Sigma(G)$.

 - **Teichmüller unit sphere bundle** $U\mathcal{M}_\Sigma$ over \mathcal{M}_Σ with Teichmüller geodesic flow ϕ:

 $$U\mathcal{M}_\Sigma := (U\mathcal{T}_\Sigma)/\text{Mod}(\Sigma)$$
 $$\mathcal{M}_\Sigma := \mathcal{T}_\Sigma/\text{Mod}(\Sigma)$$

 invariantly stratified by strata $U\mathcal{M}_\Sigma^\sigma$, indexed by partitions σ of $4g - 4$, corresponding to zeroes of quadratic differentials.

 - Insert $\text{Rep}(\pi, G)^\alpha$ as the fiber:

 $$U\mathcal{E}_\Sigma(G)^{\sigma,\alpha} := ((U\mathcal{T}_\Sigma)^\sigma \times \text{Rep}(\pi, G)^\alpha)/\text{Mod}(\Sigma)$$

 - Horizontally lift ϕ to flow Φ on $U\mathcal{E}_\Sigma(G)^{\sigma,\alpha}$.

- When G is compact, then the flow Φ is mixing (and thus ergodic) on $U\mathcal{E}_\Sigma(G)^{\sigma,\alpha}$.

- $\text{Mod}(\Sigma)$-dynamics on $\text{Rep}(\pi, G)$ replaced by equivalent action of more tractable group R (or even $\text{SL}(2, R)$).
Extending Teichmüller flow

- Now replace dynamics of $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by a measure-preserving flow Φ on flat bundle $U\mathcal{E}_\Sigma(G)$.
 - *Teichmüller unit sphere bundle* $U\mathcal{M}_\Sigma$ over \mathcal{M}_Σ with Teichmüller geodesic flow ϕ:

 $$U\mathcal{M}_\Sigma := (U\mathcal{I}_\Sigma)/\text{Mod}(\Sigma)$$
 $$\mathcal{M}_\Sigma := \mathcal{I}_\Sigma/\text{Mod}(\Sigma)$$

 invariantly stratified by strata $U\mathcal{M}_\Sigma^\sigma$, indexed by partitions σ of $4g - 4$, corresponding to zeroes of quadratic differentials.
 - Insert $\text{Rep}(\pi, G)^\alpha$ as the fiber:

 $$U\mathcal{E}_\Sigma(G)^{\sigma,\alpha} := ((U\mathcal{I}_\Sigma)^{\sigma} \times \text{Rep}(\pi, G)^\alpha)/\text{Mod}(\Sigma)$$

 - Horizontally lift ϕ to flow Φ on $U\mathcal{E}_\Sigma(G)^{\sigma,\alpha}$.
 - Teichmüller dynamics on $U\mathcal{M}_\Sigma$ extends to $(U\mathcal{E}_\Sigma(G)^{\sigma,\alpha}, \Phi)$.

- $\text{Mod}(\Sigma)$-dynamics on $\text{Rep}(\pi, G)$ replaced by equivalent action of more tractable group R (or even $\text{SL}(2, \mathbb{R})$).

- *(Forni – G)* When G is compact, then the flow Φ is mixing (and thus ergodic) on $U\mathcal{E}_\Sigma(G)^{\sigma,\alpha}$.

Extending Teichmüller flow

- Now replace dynamics of \(\text{Mod}(\Sigma) \) on \(\text{Rep}(\pi, G) \) by a measure-preserving flow \(\Phi \) on flat bundle \(U\mathcal{E}_\Sigma(G) \).
 - *Teichmüller unit sphere bundle* \(U\mathcal{M}_\Sigma \) over \(\mathcal{M}_\Sigma \) with Teichmüller geodesic flow \(\phi \):
 \[
 U\mathcal{M}_\Sigma := (U\mathcal{T}_\Sigma)/\text{Mod}(\Sigma)
 \]
 \[
 \mathcal{M}_\Sigma := \mathcal{T}_\Sigma/\text{Mod}(\Sigma)
 \]
 invariantly stratified by strata \(U\mathcal{M}_\Sigma^\sigma \), indexed by partitions \(\sigma \) of \(4g - 4 \), corresponding to zeroes of quadratic differentials.
 - Insert \(\text{Rep}(\pi, G)^\alpha \) as the fiber:
 \[
 U\mathcal{E}_\Sigma(G)^{\sigma, \alpha} := ((U\mathcal{T}_\Sigma)^\sigma \times \text{Rep}(\pi, G)^\alpha)/\text{Mod}(\Sigma)
 \]
 - Horizontally lift \(\phi \) to flow \(\Phi \) on \(U\mathcal{E}_\Sigma(G)^{\sigma, \alpha} \).
 - Teichmüller dynamics on \(U\mathcal{M}_\Sigma \) extends to \((U\mathcal{E}_\Sigma(G)^{\sigma, \alpha}, \Phi) \).
 - \(\text{Mod}(\Sigma) \)-dynamics on \(\text{Rep}(\pi, G) \) replaced by equivalent action of more tractable group \(\mathbb{R} \) (or even \(\text{SL}(2, \mathbb{R}) \)).

- *(Forni – G)* When \(G \) is compact, then the flow \(\Phi \) is mixing (and thus ergodic) on \(U\mathcal{E}_\Sigma(G)^{\sigma, \alpha} \).
Extending Teichmüller flow

Now replace dynamics of $\text{Mod}(\Sigma)$ on $\text{Rep}(\pi, G)$ by a measure-preserving flow Φ on flat bundle $U\mathcal{C}_\Sigma(G)$.

- **Teichmüller unit sphere bundle** $U\mathcal{M}_\Sigma$ over \mathcal{M}_Σ with Teichmüller geodesic flow ϕ:

 $$U\mathcal{M}_\Sigma := (U\mathcal{T}_\Sigma)/\text{Mod}(\Sigma)$$

 $$\mathcal{M}_\Sigma := \mathcal{T}_\Sigma/\text{Mod}(\Sigma)$$

 invariantly stratified by strata $U\mathcal{M}_\Sigma^\sigma$, indexed by partitions σ of $4g - 4$, corresponding to zeroes of quadratic differentials.

- Insert $\text{Rep}(\pi, G)^\alpha$ as the fiber:

 $$U\mathcal{C}_\Sigma(G)^{\sigma, \alpha} := ((U\mathcal{T}_\Sigma)^\sigma \times \text{Rep}(\pi, G)^\alpha)/\text{Mod}(\Sigma)$$

- Horizontally lift ϕ to flow Φ on $U\mathcal{C}_\Sigma(G)^{\sigma, \alpha}$.

- Teichmüller dynamics on $U\mathcal{M}_\Sigma$ extends to $(U\mathcal{C}_\Sigma(G)^{\sigma, \alpha}, \Phi)$.

- $\text{Mod}(\Sigma)$-dynamics on $\text{Rep}(\pi, G)$ replaced by equivalent action of more tractable group \mathbb{R} (or even $\text{SL}(2, \mathbb{R})$).

- (Forni – G) When G is compact, then the flow Φ is mixing (and thus ergodic) on $U\mathcal{C}_\Sigma(G)^{\sigma, \alpha}$.
Character functions and Hamiltonian twist flows

Elements $\gamma \in \pi_1(\Sigma)$ define character functions on $\text{Rep}(\pi, G)$:

$$\text{Rep}(\pi, G) \xrightarrow{f_{\gamma}} \mathbb{R}, \quad \rho \mapsto \mathbb{R} (\text{Tr} \rho(\gamma))$$

with Hamiltonian vector fields $\text{Ham}(f_{\gamma})$.

For the Fricke-Teichmüller component when $G = \text{PSL}(2, \mathbb{R})$, and γ corresponding to a simple loop, $\text{Ham}(f_{\gamma})$ generates the Fenchel-Nielsen twist flows, reparametrized (Wolpert 1982).

γ determines an oriented cycle on Σ and the Killing vector field generating the holonomy $\rho(\gamma)$ defines a coefficient in the Lie algebra $\text{sl}(2, \mathbb{R})$, giving an infinitesimal deformation ρ in $T[\rho] \text{Hom}(\pi_1(\Sigma), G)/G \sim = H_1(\Sigma, \text{Ad} \rho)$.

This deformation is supported on the cycle γ.
Character functions and Hamiltonian twist flows

- Elements $\gamma \in \pi_1(\Sigma)$ define \textit{character functions} on $\text{Rep}(\pi, G)$:

$$\text{Rep}(\pi, G) \xrightarrow{f_\gamma} \mathbb{R}$$

$$[\rho] \mapsto \Re(\text{Tr}\rho(\gamma))$$

with Hamiltonian vector fields $\text{Ham}(f_\gamma)$.
Character functions and Hamiltonian twist flows

- Elements $\gamma \in \pi_1(\Sigma)$ define character functions on $\text{Rep}(\pi, G)$:

\[\text{Rep}(\pi, G) \xrightarrow{f_\gamma} \mathbb{R} \]

\[[\rho] \mapsto \Re(\text{Tr}\rho(\gamma)) \]

with Hamiltonian vector fields $\text{Ham}(f_\gamma)$.

- For the Fricke-Teichmüller component when $G = \text{PSL}(2, \mathbb{R})$, and γ corresponding to a simple loop, $\text{Ham}(f_\gamma)$ generates the Fenchel-Nielsen twist flows, reparametrized (Wolpert 1982).
Character functions and Hamiltonian twist flows

Elements $\gamma \in \pi_1(\Sigma)$ define character functions on $\text{Rep}(\pi, G)$:

$$\text{Rep}(\pi, G) \xrightarrow{f_\gamma} \mathbb{R}$$

$$[\rho] \mapsto \Re(\text{Tr}\rho(\gamma))$$

with Hamiltonian vector fields $\text{Ham}(f_\gamma)$.

For the Fricke-Teichmüller component when $G = \text{PSL}(2, \mathbb{R})$, and γ corresponding to a simple loop, $\text{Ham}(f_\gamma)$ generates the Fenchel-Nielsen twist flows, reparametrized (Wolpert 1982).

γ determines an oriented cycle on Σ and the Killing vector field generating the holonomy $\rho(\gamma)$ defines a coefficient in the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$, giving an infinitesimal deformation of ρ in

$$T_{[\rho]}\text{Hom}(\pi_1(\Sigma), G)/G \cong H_1(\Sigma, \mathfrak{sl}(2, \mathbb{R})_{\text{Ad}\rho})$$
Character functions and Hamiltonian twist flows

- Elements $\gamma \in \pi_1(\Sigma)$ define *character functions* on $\text{Rep}(\pi, G)$:

$$
\text{Rep}(\pi, G) \xrightarrow{f_\gamma} \mathbb{R} \\
[\rho] \mapsto \Re(\text{Tr}\rho(\gamma))
$$

with Hamiltonian vector fields $\text{Ham}(f_\gamma)$.

- For the Fricke-Teichmüller component when $G = \text{PSL}(2, \mathbb{R})$, and γ corresponding to a *simple loop*, $\text{Ham}(f_\gamma)$ generates the *Fenchel-Nielsen twist flows*, reparametrized (Wolpert 1982).

 - γ determines an *oriented cycle* on Σ and the Killing vector field generating the holonomy $\rho(\gamma)$ defines a coefficient in the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$, giving an *infinitesimal deformation* of ρ in

$$
T_{[\rho]}\text{Hom}(\pi_1(\Sigma), G)/G \cong H_1(\Sigma, \mathfrak{sl}(2, \mathbb{R})_{\text{Ad}_\rho})
$$

- This deformation is *supported* on the cycle γ.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.
- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2,\mathbb{R})$ \Rightarrow Integral curves of $\text{Ham}(f_\gamma)$ are circles $S_{\gamma\rho}$.
- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of $S_{\gamma\rho}$.
- Ergodic decomposition: Every Tw_γ-invariant function is a.e. $\text{Ham}(f_\gamma)$-invariant.
- For $\text{SL}(2)$, a family of simple curves exist so that f_γ generate the coordinate ring of $\text{Rep}(\pi, G)$.
- Flows of $\text{Ham}(f_\gamma)$ generate transitive action on each connected component of where the vector fields span.
- Mod(Σ)-action ergodic on regions where simple loops have elliptic holonomy.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.

$\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R}) = \Rightarrow$ Integral curves of $\text{Ham}(f_\gamma)$ are circles $S_{\rho(\gamma)}$.

- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of $S_{\rho(\gamma)}$;

Ergodic decomposition: Every Tw_γ-invariant function is a.e. $\text{Ham}(f_\gamma)$-invariant.

- For $\text{SL}(2)$, a family of simple curves exist so that f_γ generate the coordinate ring of $\text{Rep}(\pi, G)$

- Flows of $\text{Ham}(f_\gamma)$ generate transitive action on each connected component of where the vector fields span.

- Mod(Σ)-action ergodic on regions where simple loops have elliptic holonomy.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.

- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R})$.
 Integral curves of $\text{Ham}(f_\gamma)$ are circles S_ρ^γ.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.

- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R}) \rightarrow$
 Integral curves of $\text{Ham}(f_\gamma)$ are circles S_ρ^γ.

- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S_ρ^γ;
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.

- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R}) \xrightarrow{\sim} \text{Ham}(f_\gamma)$

 Integral curves of $\text{Ham}(f_\gamma)$ are circles S_{ρ}^γ.

- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S_{ρ}^γ;

- Ergodic decomposition: Every Tw_γ-invariant function is a a.e. $\text{Ham}(f_\gamma)$-invariant.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.
- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R})$\implies Integral curves of $\text{Ham}(f_\gamma)$ are circles S_ρ^γ.
- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S_ρ^γ;
- Ergodic decomposition: Every Tw_γ-invariant function is a a.e. $\text{Ham}(f_\gamma)$-invariant.
 - For $\text{SL}(2)$, a family of simple curves exist so that f_γ generate the coordinate ring of $\text{Rep}(\pi, G)$.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.
- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R}) \rightarrow$
 Integral curves of $\text{Ham}(f_\gamma)$ are circles S^γ_ρ.
- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S^γ_ρ;
- Ergodic decomposition: Every Tw_γ-invariant function is a a.e. $\text{Ham}(f_\gamma)$-invariant.
 - For $\text{SL}(2)$, a family of simple curves exist so that f_γ generate the coordinate ring of $\text{Rep}(\pi, G)$
 - Flows of $\text{Ham}(f_\gamma)$ generate transitive action on each connected component of where the vector fields span.
Hamiltonian flows and Dehn twists

- Dehn twist Tw_γ generates lattice inside \mathbb{R}-action corresponding to $\text{Ham}(f_\gamma)$-orbits.
- $\rho(\gamma)$ elliptic element of $G = \text{SL}(2, \mathbb{R}) \rightarrow$

 Integral curves of $\text{Ham}(f_\gamma)$ are circles S^γ_ρ.
- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S^γ_ρ;
- Ergodic decomposition: Every Tw_γ-invariant function is a a.e. $\text{Ham}(f_\gamma)$-invariant.

 - For $\text{SL}(2)$, a family of simple curves exist so that f_γ generate the coordinate ring of $\text{Rep}(\pi, G)$
 - Flows of $\text{Ham}(f_\gamma)$ generate transitive action on each connected component of where the vector fields span.

- $\text{Mod}(\Sigma)$-action ergodic on regions where simple loops have elliptic holonomy.
Surfaces with $\pi \cong F_2$
Vogt-Fricke theorem and F_2

Let $F_2 = \langle X, Y \rangle$ be free of rank two. Then $\text{Hom}(F_2, \text{SL}(2)) \cong \text{SL}(2) \times \text{SL}(2)$ and $\text{Rep}(F_2, \text{SL}(2))$ is its quotient under $\text{Inn}(\text{SL}(2))$.

The $\text{Inn}(\text{SL}(2))$-invariant mapping $\text{Hom}(F_2, \text{SL}(2)) \rightarrow \mathbb{C}^3 \rho \mapsto \begin{bmatrix} \xi := \text{Tr}(\rho(X)) \\ \eta := \text{Tr}(\rho(Y)) \\ \zeta := \text{Tr}(\rho(XY)) \end{bmatrix}$ defines an isomorphism $\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3$.
Vogt-Fricke theorem and F_2

Let $F_2 = \langle X, Y \rangle$ be free of rank two. Then

$$\text{Hom}(F_2, \text{SL}(2)) \cong \text{SL}(2) \times \text{SL}(2)$$

and $\text{Rep}(F_2, \text{SL}(2))$ is its quotient under $\text{Inn}(\text{SL}(2))$.

The $\text{Inn}(\text{SL}(2))$-invariant mapping

$$\rho \mapsto \begin{bmatrix} \xi := \text{Tr}(\rho(X)) & \eta := \text{Tr}(\rho(Y)) & \zeta := \text{Tr}(\rho(XY)) \end{bmatrix}$$

defines an isomorphism

$$\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3.$$
Vogt-Fricke theorem and F_2

- Let $F_2 = \langle X, Y \rangle$ be free of rank two. Then

$$\text{Hom}(F_2, \text{SL}(2)) \cong \text{SL}(2) \times \text{SL}(2)$$

and $\text{Rep}(F_2, \text{SL}(2))$ is its quotient under $\text{Inn}(\text{SL}(2))$.

- The $\text{Inn}(\text{SL}(2))$-invariant mapping

$$\text{Hom}(F_2, \text{SL}(2)) \rightarrow \mathbb{C}^3$$

$$\rho \mapsto \begin{bmatrix}
\xi := \text{Tr}(\rho(X)) \\
\eta := \text{Tr}(\rho(Y)) \\
\zeta := \text{Tr}(\rho(XY))
\end{bmatrix}$$

defines an isomorphism

$$\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3.$$
Polynomial automorphisms
 Polynomial automorphisms

- Out(F_2)-invariant commutator trace function:

$$\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C}$$

$$(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta - 2$$

$$= \text{Tr}[\rho(X), \rho(Y)]$$
Polynomial automorphisms

- Out(F_2)-invariant commutator trace function:

\[
\text{Rep}(F_2, SL(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C} \\
(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi \eta \zeta - 2 \\
= \text{Tr}[\rho(X), \rho(Y)]
\]

- Casimir (∂-trace) for one-holed torus $\Sigma_{1,1}$.

Polynomial automorphisms

- Out(F_2)-invariant commutator trace function:

$$\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C}$$

$$(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta - 2 = \text{Tr}[\rho(X), \rho(Y)]$$

- Casimir (∂-trace) for one-holed torus $\Sigma_{1,1}$.
- (Nielsen): Out(F_2) $\cong \text{GL}(2, \mathbb{Z}) = \text{Mod}(\Sigma_{1,1})$.
Polynomial automorphisms

▶ Out(F_2)-invariant commutator trace function:

\[
\text{Rep}(F_2, SL(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C} \\
(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta - 2 = \text{Tr}[\rho(X), \rho(Y)]
\]

▶ Casimir (∂-trace) for one-holed torus $\Sigma_{1,1}$.
▶ (Nielsen): Out(F_2) \cong GL(2, \mathbb{Z}) = Mod($\Sigma_{1,1}$).

▶ Nonlinear automorphisms generated by Vieta involutions:

\[
\begin{bmatrix}
\xi \\
\eta \\
\zeta
\end{bmatrix} \mapsto \begin{bmatrix}
\eta\zeta - \xi \\
\eta \\
\zeta
\end{bmatrix}, \quad \begin{bmatrix}
\xi \\
\eta \\
\zeta
\end{bmatrix} \mapsto \begin{bmatrix}
\xi \\
\xi\zeta - \eta \\
\zeta
\end{bmatrix}, \quad \begin{bmatrix}
\xi \\
\eta \\
\zeta
\end{bmatrix} \mapsto \begin{bmatrix}
\xi \\
\xi\eta - \zeta \\
\zeta
\end{bmatrix}
\]
Polynomial automorphisms

▶ Out(F_2)-invariant commutator trace function:

$$\text{Rep}(F_2, SL(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C}$$

$$(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi \eta \zeta - 2 = \text{Tr}[\rho(X), \rho(Y)]$$

▶ Casimir (∂-trace) for one-holed torus $\Sigma_{1,1}$.
▶ (Nielsen): Out(F_2) \cong GL(2, \mathbb{Z}) = Mod($\Sigma_{1,1}$).

▶ Nonlinear automorphisms generated by Vieta involutions:

$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \mapsto \begin{bmatrix} \eta \zeta - \xi \\ \eta \\ \zeta \end{bmatrix}, \quad \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \mapsto \begin{bmatrix} \xi \\ \xi \zeta - \eta \\ \zeta \end{bmatrix}, \quad \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \mapsto \begin{bmatrix} \xi \\ \eta \zeta - \zeta \end{bmatrix}$$

▶ Coordinate projections are double Galois coverings
 Polynomial automorphisms

- Out(F_2)-invariant commutator trace function:

\[
\text{Rep}(F_2, \text{SL}(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C} \\
(\xi, \eta, \zeta) \mapsto \xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta - 2 = \text{Tr}[\rho(X), \rho(Y)]
\]

- Casimir (∂-trace) for one-holed torus $\Sigma_{1,1}$.
- (Nielsen): Out(F_2) \cong GL(2, \mathbb{Z}) = Mod($\Sigma_{1,1}$).

- Nonlinear automorphisms generated by Vieta involutions:

\[
\begin{bmatrix}
\xi \\
\eta \\
\zeta \\
\end{bmatrix} \mapsto \begin{bmatrix}
\eta\zeta - \xi \\
\eta \\
\zeta \\
\end{bmatrix}, \quad
\begin{bmatrix}
\xi \\
\eta \\
\zeta \\
\end{bmatrix} \mapsto \begin{bmatrix}
\xi \\
\xi\zeta - \eta \\
\zeta \\
\end{bmatrix}, \quad
\begin{bmatrix}
\xi \\
\eta \\
\zeta \\
\end{bmatrix} \mapsto \begin{bmatrix}
\xi \\
\eta \\
\xi\eta - \zeta \\
\end{bmatrix}
\]

- Coordinate projections are double Galois coverings
- Vieta involutions are deck transformations.
Cayley cubic $\xi^2 + \eta^2 + \zeta^2 - \xi \eta \zeta = 4$
Cayley cubic $\xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta = 4$

- Reducible representations correspond precisely to $\kappa^{-1}(2)$.
Cayley cubic $\xi^2 + \eta^2 + \zeta^2 - \xi \eta \zeta = 4$

- Reducible representations correspond precisely to $\kappa^{-1}(2)$.
- Quotient of $\mathbb{C}^* \times \mathbb{C}^*$ by the involution

$$(a, b) \mapsto (a^{-1}, b^{-1}).$$

$\xi = a + a^{-1}, \quad \eta = b + b^{-1}, \quad \zeta = ab + (ab)^{-1}$
Cayley cubic $\xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta = 4$

- Reducible representations correspond precisely to $\kappa^{-1}(2)$.
 - Quotient of $\mathbb{C}^* \times \mathbb{C}^*$ by the involution
 $$(a, b) \mapsto (a^{-1}, b^{-1}).$$
 $$\xi = a + a^{-1}, \quad \eta = b + b^{-1}, \quad \zeta = ab + (ab)^{-1}$$
 - Homogeneous dynamics: $\text{GL}(2, \mathbb{Z})$-action on $(\mathbb{C}^* \times \mathbb{C}^*)/(\mathbb{Z}/2)$.
\mathbb{R}-points: Unitary representations

Characters in $[-2, 2]$ with $\kappa \leq 2 \leftrightarrow$ SU(2)-representations.
\(\mathbb{R} \)-points: Unitary representations

- \(\mathbb{R} \)-points correspond to representations into \(\mathbb{R} \)-forms of \(SL(2) \): either \(SL(2, \mathbb{R}) \) or \(SU(2) \).
R-points: Unitary representations

- R-points correspond to representations into R-forms of SL(2): either $\text{SL}(2, \mathbb{R})$ or $\text{SU}(2)$.
- Characters in $[-2, 2]^3$ with $\kappa \leq 2 \leftrightarrow \text{SU}(2)$-representations.
\mathbb{R}-points: Hyperbolic structures on orientable surfaces

Real characters, that is when $(\xi, \eta, \zeta) \in \mathbb{R}^3$, may correspond to hyperbolic structures on the three-holed sphere $\Sigma_{0,3}$ and the one-holed torus $\Sigma_{1,1}$.

Hyperbolic three-holed spheres are parametrized by the lengths ℓ_X, ℓ_Y, ℓ_Z of $\partial \Sigma$:

$$\begin{align*}
\xi &= -2 \cosh \left(\frac{\ell_X}{2} \right) \\
\eta &= -2 \cosh \left(\frac{\ell_Y}{2} \right) \\
\zeta &= -2 \cosh \left(\frac{\ell_Z}{2} \right)
\end{align*}$$

comprising the subset $(-\infty, -2\sqrt{3}] \subset \mathbb{R}^3$.

Necessarily $k = \kappa(\xi, \eta, \zeta) \geq 18$.
Real characters, that is when \((\xi, \eta, \zeta) \in \mathbb{R}^3\), may correspond to hyperbolic structures on the three-holed sphere \(\Sigma_{0,3}\) and the one-holed torus \(\Sigma_{1,1}\).
Real characters, that is when $(\xi, \eta, \zeta) \in \mathbb{R}^3$, may correspond to hyperbolic structures on the three-holed sphere $\Sigma_{0,3}$ and the one-holed torus $\Sigma_{1,1}$.

Hyperbolic three-holed spheres are parametrized by the lengths ℓ_X, ℓ_Y, ℓ_Z of $\partial \Sigma$:

\[
\begin{align*}
\xi &:= -2 \cosh \left(\ell_X / 2 \right) \\
\eta &:= -2 \cosh \left(\ell_Y / 2 \right) \\
\zeta &:= -2 \cosh \left(\ell_Z / 2 \right)
\end{align*}
\]

comprising the subset $(-\infty, -2]^3 \subset \mathbb{R}^3$.

\textbf{R-points: Hyperbolic structures on orientable surfaces}
Real characters, that is when \((\xi, \eta, \zeta) \in \mathbb{R}^3\), may correspond to hyperbolic structures on the three-holed sphere \(\Sigma_{0,3}\) and the one-holed torus \(\Sigma_{1,1}\).

Hyperbolic three-holed spheres are parametrized by the lengths \(\ell_X, \ell_Y, \ell_Z\) of \(\partial \Sigma\):

\[
\begin{align*}
\xi &:= -2 \cosh \left(\frac{\ell_X}{2} \right) \\
\eta &:= -2 \cosh \left(\frac{\ell_Y}{2} \right) \\
\zeta &:= -2 \cosh \left(\frac{\ell_Z}{2} \right)
\end{align*}
\]

comprising the subset \((-\infty, -2]^3 \subset \mathbb{R}^3\).

Necessarily \(k = \kappa(\xi, \eta, \zeta) \geq 18\).
Hyperbolic structures on one-holed tori

\(\mathbb{R}\)-points: Hyperbolic structures on one-holed tori

\[\text{Hyperbolic structures on } \Sigma_{1,1} \text{ correspond to real characters } (\xi, \eta, \zeta) \in \mathbb{R}^3 \text{ with commutator trace } \kappa := \kappa(\xi, \eta, \zeta) < -2 \text{ corresponding to the boundary length:} \]

\[\kappa = -2 \cosh\left(\frac{\ell_{\partial \Sigma}}{2}\right) \]

The level set \(\mathbb{R}^3 \cap \kappa = 1(\kappa)\) corresponds to hyperbolic structures on a once-punctured torus, that is, the end of \(\Sigma\) corresponding to \(\partial \Sigma\) is a cusp.

Level sets \(\mathbb{R}^3 \cap \kappa = t(\kappa)\) where \(-2 < \kappa < 2\) correspond to hyperbolic tori with one cone point of angle \(\theta\):

\[\kappa = -2 \cos\left(\frac{\theta}{2}\right) \]

Generalized Fricke space \(F'(\Sigma)\) comprises hyperbolic structures on \(\Sigma\) with funnels, cusps or discs containing cone points.
Hyperbolic structures on $\Sigma_{1,1}$ correspond to real characters $(\xi, \eta, \zeta) \in \mathbb{R}^3$ with commutator trace $k := \kappa(\xi, \eta, \zeta) < -2$ corresponding to the boundary length:

$$k = -2 \cosh \left(\frac{\ell_{\partial \Sigma}}{2} \right)$$
Hyperbolic structures on $\Sigma_{1,1}$ correspond to real characters $(\xi, \eta, \zeta) \in \mathbb{R}^3$ with commutator trace $k := \kappa(\xi, \eta, \zeta) < -2$ corresponding to the boundary length:

$$k = -2 \cosh \left(\frac{\ell_{\partial \Sigma}}{2} \right)$$

The level set $\mathbb{R}^3 \cap \kappa^{-1}(-2)$ corresponds to hyperbolic structures on a once-punctured torus, that is, the end of Σ corresponding to $\partial \Sigma$ is a cusp.
R-points: Hyperbolic structures on one-holed tori

- Hyperbolic structures on $\Sigma_{1,1}$ correspond to real characters $(\xi, \eta, \zeta) \in \mathbb{R}^3$ with commutator trace $k := \kappa(\xi, \eta, \zeta) < -2$ corresponding to the boundary length:

 $$k = -2 \cosh \left(\frac{\ell_{\partial \Sigma}}{2} \right)$$

- The level set $\mathbb{R}^3 \cap \kappa^{-1}(-2)$ corresponds to hyperbolic structures on a once-punctured torus, that is, the end of Σ corresponding to $\partial \Sigma$ is a *cusp*.

- Level sets $\mathbb{R}^3 \cap \kappa^{-1}(k)$ where $-2 < k < 2$ correspond to hyperbolic tori with one *cone point of angle* θ:

 $$k = -2 \cos \left(\frac{\theta}{2} \right)$$
Hyperbolic structures on $\Sigma_{1,1}$ correspond to real characters $(\xi, \eta, \zeta) \in \mathbb{R}^3$ with commutator trace $k := \kappa(\xi, \eta, \zeta) < -2$ corresponding to the boundary length:

$$k = -2 \cosh \left(\frac{\ell_{\partial \Sigma}}{2} \right)$$

The level set $\mathbb{R}^3 \cap \kappa^{-1}(-2)$ corresponds to hyperbolic structures on a once-punctured torus, that is, the end of Σ corresponding to $\partial \Sigma$ is a cusp.

Level sets $\mathbb{R}^3 \cap \kappa^{-1}(k)$ where $-2 < k < 2$ correspond to hyperbolic tori with one cone point of angle θ:

$$k = -2 \cos \left(\frac{\theta}{2} \right),$$

Generalized Fricke space $\mathfrak{F}'(\Sigma)$ comprises hyperbolic structures on Σ with funnels, cusps or discs containing cone points.
Example: The Markoff surface $x^2 + y^2 + z^2 = xyz$

$\mathbb{R}^3 \cap \kappa^{-1}(-2)$ parametrizes hyperbolic structures on the punctured torus. The origin $(0, 0, 0)$ corresponds to the unique $SU(2)$-representation with $k = -2$. The famous Markoff triples correspond to triply symmetric hyperbolic punctured tori.
Fricke orbits define wandering domains for $k > 2$

For $k \leq 18$, action is ergodic.

For $k > 18$, action is ergodic on complement of Fricke orbit.
Fricke orbits define wandering domains for $k > 2$

- Homotopy equivalences $\Sigma_{1,1} \to \Sigma_{0,3}$ define embeddings of Fricke spaces $\mathcal{F}(\Sigma_{0,3})$ in $\kappa^{-1}(k)$ for $k > 18$;
Fricke orbits define wandering domains for $k > 2$

- Homotopy equivalences $\Sigma_{1,1} \rightarrow \Sigma_{0,3}$ define embeddings of Fricke spaces $\mathfrak{F}(\Sigma_{0,3})$ in $\kappa^{-1}(k)$ for $k > 18$;
- For $k \leq 18$, action is ergodic.
Fricke orbits define wandering domains for $k > 2$

- Homotopy equivalences $\Sigma_{1,1} \to \Sigma_{0,3}$ define embeddings of Fricke spaces $\mathfrak{F}(\Sigma_{0,3})$ in $\kappa^{-1}(k)$ for $k > 18$;
- For $k \leq 18$, action is ergodic.
- For $k > 18$, action is ergodic on complement of Fricke orbit.
Relative character variety for one-holed Klein bottle $C_{1,1}$

Let $k > 2$ be the commutator trace. The relative character variety is defined by:

$$-x^2 - y^2 + z^2 + xyz = k + 2$$

Each component projects diffeomorphically to the (x, y)-plane.
The Generalized Fricke space \(\mathcal{F}'(\mathcal{C}_{1,1}) \) of \(\mathcal{C}_{1,1} \) identifies with the subset defined by \(z > 2 \) and \(Q_z(x, y) = x^2 + y^2 - zxy < 0 \).

The trace function \(z \) corresponding to two-sided interior curve \(Z \).

The boundary trace is:

\[
\delta := Q_z(x, y) + 2 = z^2 - k =
\begin{cases}
-2 \cosh(\ell/2) & \text{for a funnel with closed geodesic of length } \ell; \\
-2 & \text{for a cusp}; \\
-2 \cos(\theta/2) & \text{for a point with cone angle } \theta.
\end{cases}
\]

Goldman – McShane – Stantchev – Ser Peow Tan

Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane, DG.1509.03790
Structures on $C_{1,1}$

- The Generalized Fricke space $\mathcal{F}'(C_{1,1})$ of $C_{1,1}$ identifies with the subset defined by $z > 2$ and

$$Q_z(x, y) = x^2 + y^2 - zxy < 0.$$
Structures on $C_{1,1}$

- The Generalized Fricke space $\mathcal{F}'(C_{1,1})$ of $C_{1,1}$ identifies with the subset defined by $z > 2$ and

$$Q_z(x, y) = x^2 + y^2 - zxy < 0.$$

- Trace function z corresponding to two-sided interior curve Z.

\[\delta := Q_z(x, y) + 2 = z^2 - k = \begin{cases} -2 \cosh(\ell/2) & \text{for a funnel with closed geodesic of length } \ell; \\ -2 & \text{for a cusp}; \\ -2 \cos(\theta/2) & \text{for a point with cone angle } \theta; \end{cases}\]
Structures on $C_{1,1}$

- The Generalized Fricke space $\mathcal{F}'(C_{1,1})$ of $C_{1,1}$ identifies with the subset defined by $z > 2$ and
 \[Q_z(x, y) = x^2 + y^2 - zxy < 0. \]

- Trace function z corresponding to two-sided interior curve Z.

- The boundary trace is:
 \[
 \delta := Q_z(x, y) + 2 = z^2 - k = \begin{cases}
 -2 \cosh(\ell/2) & \text{for a funnel with closed geodesic of length } \ell; \\
 -2 & \text{for a cusp}; \\
 -2 \cos(\theta/2) & \text{for a point with cone angle } \theta;
 \end{cases}
 \]
Structures on $C_{1,1}$

- The Generalized Fricke space $\mathbb{H}'(C_{1,1})$ of $C_{1,1}$ identifies with the subset defined by $z > 2$ and

 $$Q_z(x, y) = x^2 + y^2 - zxy < 0.$$

- Trace function z corresponding to two-sided interior curve Z.

- The boundary trace is:

 $$\delta := Q_z(x, y) + 2 = z^2 - k =$$

 \[\begin{cases}
 -2 \cosh(\ell/2) & \text{for a funnel with closed geodesic of length } \ell; \\
 -2 & \text{for a cusp}; \\
 -2 \cos(\theta/2) & \text{for a point with cone angle } \theta;
 \end{cases}\]

- Goldman – McShane – Stantchev – Ser Peow Tan

 Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane, DG.1509.03790
The level set $\kappa^{-1}(k)$ for $k > 2$
The level set $\kappa^{-1}(k)$ for $k > 2$

- Generalized Fricke space $\mathcal{F}'(C_{1,1})$ of $C_{1,1}$ projects to a linear sector in \mathbb{R}^2 invariant under

$$\text{Mod}(C_{1,1}) \cong \mathbb{Z}/2 \times (\mathbb{Z}/2 \ast \mathbb{Z}/2) \sim \langle Tw_Z \rangle \cong \mathbb{Z}.$$
The level set $\kappa^{-1}(k)$ for $k > 2$

- Generalized Fricke space $\mathcal{F}'(C_{1,1})$ of $C_{1,1}$ projects to a linear sector in \mathbb{R}^2 invariant under

$$\text{Mod}(C_{1,1}) \cong \mathbb{Z}/2 \times (\mathbb{Z}/2 \rtimes \mathbb{Z}/2) \sim \langle T_{wZ} \rangle \cong \mathbb{Z}.$$

- Wandering domain under Γ whose orbit is open and dense. What is the Hausdorff dimension of its complement?