Supplement for “Stepwise Signal Extraction via Marginal Likelihood”

Proofs for the Theoretical Results in Section 3

We use the following notations throughout the proofs. We denote the number of observations within a given interval as \(n_{(a, b]} = \#\{i : a < t_i \leq b, 1 \leq i \leq n\} \), the associated likelihood function as \(p_{(a, b]}(\theta) = \prod_{t_i \in (a, b]} f(x_i | \theta) \), and the corresponding log-likelihood \(l_{(a, b]}(\theta) = \log p_{(a, b]}(\theta) \). The maximum likelihood estimator based on \(l_{(a, b]}(\theta) \) is denoted as \(\hat{\theta}_{(a, b]} \). In what follows, we present our proofs for one-dimensional \(\theta \), but we want to emphasize that this is only for notational convenience. A general dimensional case can be easily obtained through a straightforward substitution of the one dimensional quantities with their multivariate counterparts. We denote \(\hat{\sigma}^2_{(a, b]} = \{-l''_{(a, b]}(\hat{\theta}_{(a, b]})\}^{-1} \), the observed Fisher information, and let \(J(\theta_0) \) represent the (expected) Fisher information evaluated at \(\theta_0 \). We use \(\overset{P}{\to} \) and \(O_p(1) \) to denote convergence in probability and \(O_p(1) \) to denote a sequence bounded in probability.

Next, we list the conditions (A1)-(A5) and (B1)-(B4) discussed in Section 3. Conditions (A1)-(A5) are used to ensure the consistency of the MLE of \(\theta_j \). Conditions (B1)-(B4) ensure that the second derivative of log-likelihood is sufficiently smooth for values near \(\theta_j \). See Walker (1969).

(A1) \(\Theta \) is a closed set of points on the real line.

(A2) The set of points \(\{x : f(x | \theta) > 0\} \) is independent of \(\theta \); we denote this set by \(\mathcal{X} \).

(A3) If \(\theta_1, \theta_2 \) are two distinct points of \(\Theta \), then the Lebegue measure of \(\mu\{x : f(x | \theta_1) \neq f(x | \theta_2)\} > 0 \).

(A4) Let \(x \in \mathcal{X}, \theta' \in \Theta \). For all \(\theta \) such that \(|\theta - \theta'| < \delta \) with \(\delta \) sufficiently small, we have

\[
|\log f(x | \theta) - \log f(x | \theta')| < H_\delta(x, \theta'),
\]

where \(\lim_{\delta \to 0} H_\delta(x, \theta') = 0 \), and, for the true value \(\theta_0 \in \Theta \), \(\lim_{\delta \to 0} \int_{\mathcal{X}} \delta H_\delta(x, \theta') f(x | \theta_0) d\mu = 0 \).

(A5) If \(\Theta \) is not bounded, then for \(\theta_0 \in \Theta \) and sufficiently large \(\Delta \), we have \(\log f(x | \theta) - \log f(x | \theta_0) < K_\Delta(x, \theta_0) \), whenever \(|\theta| > \Delta \), where \(\lim_{\Delta \to \infty} \int_{\mathcal{X}} K_\Delta(x, \theta_0) f(x | \theta_0) d\mu < 0 \).

(B1) \(\log f(x | \theta) \) is twice differentiable with respect to \(\theta \) in some neighborhood of \(\theta_0 \).

(B2) Let \(J(\theta_0) = \int_{\mathcal{X}} f_0 \left(\frac{\partial \log f_0}{\partial \theta_0} \right)^2 d\mu \), where \(f_0 \) denotes \(f(x | \theta_0) \). Then \(0 < J(\theta_0) < \infty \).

(B3) \(\int_{\mathcal{X}} \frac{\partial f_0}{\partial \theta_0} d\mu = \int_{\mathcal{X}} \frac{\partial^2 f_0}{\partial \theta_0^2} d\mu = 0 \).

(B4) If \(|\theta - \theta_0| < \delta \), where \(\delta \) is sufficiently small, then \(|\frac{\partial^2}{\partial \theta_0^2} \log f(x | \theta) - \frac{\partial^2}{\partial \theta_0^2} \log f(x | \theta_0)| < M_\delta(x, \theta_0) \), where \(\lim_{\delta \to 0} \int_{\mathcal{X}} M_\delta(x, \theta_0) f(x | \theta_0) d\mu = 0 \).
The following results from Walker (1969) (Theorem 1 and eq. 24) are needed to prove our results:

Lemma A.1. Under conditions (A1)-(A5) and (B1)-(B4), if there is no change-point in the interval \((a, b]\) and the true value of parameter within this segment is \(\theta_0\), then as \(n_{(a, b]} \to \infty\),

(i) Let \(N_0(\delta) = \{\theta : |\theta - \theta_0| < \delta\}\) be a neighborhood of \(\theta_0\) contained in \(\Theta\), the parameter space, there exists a positive number \(k_{\theta_0}(\delta)\), depending on \(\theta_0\) and \(\delta\), such that

\[
\lim_{n_{(a, b]} \to \infty} P\left[\sup_{\theta \in N_0(\delta)} n_{(a, b]}^{-1} \left\{ l_{(a, b]}(\theta) - l_{(a, b]}(\theta_0) \right\} < -k_{\theta_0}(\delta) \right] = 1;
\]

(ii) \((n_{(a, b]}\hat{\sigma}^2_{(a, b]})^{-1} \overset{P}{\to} J(\theta_0)\);

(iii) \(l_{(a, b]}(\theta_0) - l_{(a, b]}(\hat{\theta}_{(a, b]}) = O_p(1)\);

(iv) \((p_{(a, b]}(\hat{\theta}_{(a, b]})\hat{\sigma}_{(a, b]})^{-1} D(\theta_{(a, b]}|\alpha) \overset{P}{\to} (2\pi)^{-1/2}(\theta_0|\alpha)\).

The following two lemmas are also needed:

Lemma A.2. Assume regularity conditions 1)-4). Let \(a_n\) be a sequence with each element lying between two true change-points \(a_n \in [0, \tau_0, \tau_{j+1}]\)

(i) If \(n_{(\tau_{j, a_n}] \to \infty\) and \(n_{(a_n, \tau_{j+1}] \to \infty\), then

\[
\frac{D(\theta_{(\tau_{j, a_n}]}|\alpha)D(\theta_{(a_n, \tau_{j+1}]}|\alpha)}{D(\theta_{(\tau_{j, a_n}]}|\alpha)} = O_p\left(\sqrt{\frac{n_{(\tau_{j, a_n}]}}{n_{(a_n, \tau_{j+1}]}}}\right).
\]

(ii) If \(\limsup n_{(\tau_{j, a_n}]} < \infty\) and \(n_{(a_n, \tau_{j+1}]} \to \infty\), then

\[
\frac{D(\theta_{(\tau_{j, a_n}]}|\alpha)D(\theta_{(a_n, \tau_{j+1}]}|\alpha)}{D(\theta_{(\tau_{j, a_n}]}|\alpha)} = O_p(1).
\]

(iii) If \(n_{(\tau_{j, a_n}] \to \infty\) and \(\limsup n_{(a_n, \tau_{j+1}]} < \infty\), then

\[
\frac{D(\theta_{(\tau_{j, a_n}]}|\alpha)D(\theta_{(a_n, \tau_{j+1}]}|\alpha)}{D(\theta_{(\tau_{j, a_n}]}|\alpha)} = O_p(1).
\]

PROOF of Lemma A.2. Let \(\theta_{j+1}\) denote the true parameter of the segment.

(i) By Lemma A.1(iv), \(n_{(\tau_{j, a_n}] \to \infty\) and \(n_{(a_n, \tau_{j+1}]} \to \infty\) imply

\[
\frac{D(\theta_{(\tau_{j, a_n}]}|\alpha)D(\theta_{(a_n, \tau_{j+1}]}|\alpha)}{D(\theta_{(\tau_{j, a_n}]}|\alpha)} = O_p\left(\frac{p_{(\tau_{j, a_n}])(\hat{\sigma}_{(\tau_{j, a_n}]}\times p_{(a_n, \tau_{j+1}]}(\hat{\theta}_{(a_n, \tau_{j+1}]}\hat{\sigma}_{(a_n, \tau_{j+1}]}\overset{P}{\to} p_{(\tau_{j, a_n}])(\hat{\sigma}_{(\tau_{j, a_n}]}\hat{\sigma}_{(a_n, \tau_{j+1}]}\right).
\]

2
Lemma A.1(iii) tells us

\[
\frac{p(\tau_j^0, a_n) | \hat{\theta}(\tau_j^0, a_n)}{p(\tau_j^0, a_n) | \hat{\theta}(\tau_j^0, a_n)} = O_p(1)
\]

Note also that

\[
\frac{\hat{\sigma}(\tau_j^0, a_n) \hat{\sigma}(\tau_{j+1}^0, a_n)}{\hat{\sigma}(\tau_j^0, a_n) \hat{\sigma}(\tau_{j+1}^0, a_n)} = \frac{\hat{\sigma}(\tau_j^0, a_n) \sqrt{n(\tau_j^0, a_n)} \hat{\sigma}(\tau_{j+1}^0, a_n) \sqrt{n(\tau_{j+1}^0, a_n)}}{\hat{\sigma}(\tau_j^0, a_n) \sqrt{n(\tau_j^0, a_n)} \hat{\sigma}(\tau_{j+1}^0, a_n) \sqrt{n(\tau_{j+1}^0, a_n)}}
\]

\[
\xrightarrow{P} \sqrt{J-1} \left(\frac{n(\tau_j^0, a_n)}{n(\tau_{j+1}^0, a_n)} \right)
\]

by Lemma A.1(ii). The desired result follows.

(ii) If \(\limsup n(\tau_j^0, a_n) < \infty \) and \(n(\tau_j^0, a_n) \to \infty \), then similar argument applies to \(D(x(\tau_{j+1}^0, a_n) | \alpha) \) and \(D(x(\tau_j^0, a_n) | \alpha) \)

\[
\frac{D(x(\tau_j^0, a_n) | \alpha) D(x(\tau_{j+1}^0, a_n) | \alpha)}{D(x(\tau_j^0, a_n) | \alpha)} = O_p \left(\frac{D(x(\tau_j^0, a_n) | \alpha)}{p(\tau_j^0, a_n)(\theta_j+1)} \right)
\]

\[
\limsup n(\tau_j^0, a_n) < \infty \text{ implies that } n(\tau_j^0, a_n) \text{ is bounded, say by } B < \infty, \text{ for all } n. \text{ This implies } n(\tau_j^0, a_n) \to 1. \text{ Furthermore, note that for all } \theta, p(\tau_j^0, a_n)(\theta) \text{ is a product of up to } B \text{ i.i.d. random variables and } D(x(\tau_j^0, a_n) | \alpha) = \int \theta p(\tau_j^0, a_n)(\theta) \pi(\theta | \alpha) d\theta. \text{ } B \text{ is finite. } D(x(\tau_j^0, a_n) | \alpha)/p(\tau_j^0, a_n)(\theta_j+1) \text{ is, therefore, bounded in probability. The desired result thus follows. } \]

The proof of (iii) is essentially identical to that of (ii).

Lemma A.3. Assume regularity conditions 1)- 4). Let \((a_n, b_n) \) be a sequence of intervals that contains one and only one true change-point \(\tau^0 \).

(i) If \(n(\tau^0, a_n) \to \infty \) and \(n(\tau^0, b_n) \to \infty \), then

\[
\frac{D(x(\tau^0, a_n) | \alpha)}{D(x(\tau^0, b_n) | \alpha)} \xrightarrow{P} 0.
\]

(ii) If \(\limsup n(\tau^0, a_n) < \infty \) and \(n(\tau^0, b_n) \to \infty \), then

\[
\frac{D(x(\tau^0, a_n) | \alpha)}{D(x(\tau^0, b_n) | \alpha)} = O_p(1).
\]
(iii) If \(n_{(a_n, \tau^o]} \to \infty \) and \(\limsup n_{(\tau^o, b_n]} < \infty \), then

\[
\frac{D(x_{(a_n, \tau^o]}|\alpha)}{D(x_{(a_n, \tau^o]}|\alpha) D(x_{(\tau^o, b_n]}|\alpha)} = O_p(1).
\]

(A.3)

PROOF of Lemma A.3. Let \(\theta_1 \) and \(\theta_2 \) be the two segment-parameters before and after \(\tau^o \). By definition, \(D(x_{(a_n, \tau^o]}|\alpha) = \int_{\Theta} p_{(a_n, \tau^o]}(\theta) p_{(\tau^o, b_n]}(\theta) \pi(\theta|\alpha) d\theta \). Let \(N_1(\delta) \) and \(N_2(\delta) \) be disjoint neighborhoods of \(\theta_1 \) and \(\theta_2 \). We split \(D(x_{(a_n, b_n]}|\alpha) \) into three integrals, \(I_1, I_2 \) and \(I_3 \), taken respectively over the sets \(N_1(\delta), N_2(\delta) \) and \(\Theta - N_1(\delta) - N_2(\delta) \).

(i) If \(n_{(a_n, \tau^o]} \to \infty \) and \(n_{(\tau^o, b_n]} \to \infty \), then for the first integral, we can write

\[
I_1 = \int_{N_1(\delta)} p_{(a_n, \tau^o]}(\theta) p_{(\tau^o, b_n]}(\theta) \pi(\theta|\alpha) d\theta
\]

\[
= p_{(\tau^o, b_n]}(\hat{\theta}(\tau^o, b_n)) \hat{\sigma}(\tau^o, b_n) \exp[l_{(\tau^o, b_n]}(\hat{\theta}(\tau^o, b_n))] \times \int_{N_1(\delta)} \hat{\sigma}^{-1}(\tau^o, b_n) \exp[l_{(\tau^o, b_n]}(\theta) - l_{(\tau^o, b_n]}(\hat{\theta}(\tau^o, b_n))] p_{(a_n, \tau^o]}(\theta) \pi(\theta|\alpha) d\theta.
\]

According to Lemma A.1(i), the integral on the above right-hand side is less than

\[
\hat{\sigma}^{-1}(\tau^o, b_n) \exp(-n_{(\tau^o, b_n]} k_2(\delta)) \int_{N_1(\delta)} p_{(a_n, \tau^o]}(\theta) \pi(\theta|\alpha) d\theta
\]

\[
\leq \hat{\sigma}^{-1}(\tau^o, b_n) \exp(-n_{(\tau^o, b_n]} k_2(\delta)) \int_{\Theta} p_{(a_n, \tau^o]}(\theta) \pi(\theta|\alpha) d\theta
\]

\[
= \{n_{(\tau^o, b_n]} \hat{\sigma}^2(\tau^o, b_n)\}^{-1/2} n_{(\tau^o, b_n]}^{1/2} \exp(-n_{(\tau^o, b_n]} k_2(\delta)) D(x_{(a_n, \tau^o]}|\alpha)
\]

with probability tending to 1. We know from Lemma A.1(ii), (iii) and (iv) that \(n_{(a_n, \tau^o]} \to \infty \) implies

\[
[n_{(\tau^o, b_n]} \hat{\sigma}^2(\tau^o, b_n)]^{-1/2} \xrightarrow{p} \mathcal{J}(\theta_2)
\]

\[
\exp[l_{(\tau^o, b_n]}(\theta_2) - l_{(\tau^o, b_n]}(\hat{\theta}(\tau^o, b_n))] = O_p(1),
\]

\[
[p_{(a_n, \tau^o]}(\hat{\theta}(\tau^o, b_n)) \hat{\sigma}(\tau^o, b_n)]^{-1} D(x_{(\tau^o, b_n]}|\alpha) \xrightarrow{p} (2\pi)^{1/2} \mathcal{P}(\theta_2|\alpha).
\]

It follows that

\[
\frac{I_1}{D(x_{(a_n, \tau^o]}|\alpha) D(x_{(\tau^o, b_n]}|\alpha)} = O_p(n_{(\tau^o, b_n]}^{1/2} \exp\{-n_{(\tau^o, b_n]} k_2(\delta)\}) \xrightarrow{p} 0.
\]

(A.4)

Identical argument applied to \(I_2 \), the integral over \(N_2(\delta) \), together with \(n_{(a_n, \tau^o]} \to \infty \), gives

\[
\frac{I_2}{D(x_{(a_n, \tau^o]}|\alpha) D(x_{(\tau^o, b_n]}|\alpha)} = O_p(n_{(a_n, \tau^o]}^{1/2} \exp\{-n_{(a_n, \tau^o]} k_1(\delta)\}) \xrightarrow{p} 0.
\]

For the integral \(I_3 \), we apply the same argument, but we note that since the region \(\Theta - N_1(\delta) - N_2(\delta) \) contains neither the neighborhood of \(\theta_1 \) nor the neighborhood of \(\theta_2 \),

\[
\frac{I_3}{D(x_{(a_n, \tau^o]}|\alpha) D(x_{(\tau^o, b_n]}|\alpha)} = O_p((n_{(a_n, \tau^o]} n_{(\tau^o, b_n]})^{1/2} \exp\{-n_{(a_n, \tau^o]} k_1(\delta) - n_{(\tau^o, b_n]} k_2(\delta)\}),
\]
which converges to zero even faster. This proves (A.1).

(ii) \(n^{(a,\tau_0)} \to \infty \) alone gives (A.4) and that

\[
I_3 = \frac{D(x^{(a,\tau_0)}_0|\alpha)D(x^{(a,\tau_0)}_0|\alpha)}{D(x^{(a,\tau_0)}_0|\alpha)} = O_p\left(n^{1/2} \exp\left\{ -n^{(a,\tau_0)}_0k_2(\delta) \right\} \right) \to 0.
\]

Let us next consider \(I_2 \). If \(\lim \sup n^{(a,\tau_0)} \leq M \), then we know that \(n^{(a,\tau_0)} \) is bounded, say by \(B < \infty \), for all \(n \).

\[
I_2 = \int_{N_2(\delta)} p^{(a,\tau_0)}(\theta) \pi(\theta|\alpha) \exp\left\{ I^{(a,\tau_0)}_0(\theta) - I^{(a,\tau_0)}_1(\theta) \right\} d\theta
\]

Condition (A4) tells us that \(|I^{(a,\tau_0)}_0(\theta) - I^{(a,\tau_0)}_1(\theta)| \leq \sum H_\delta(x_0, \theta_2) \), where the sum is over \(t_i \in (a, \tau_0 \rangle \), which has up to \(B \) terms. It follows that

\[
I_2 \leq p^{(a,\tau_0)}(\theta_2) \exp\left\{ \sum H_\delta(x_0, \theta_2) \right\} \int_{N_2(\delta)} p^{(a,\tau_0)}(\theta) \pi(\theta|\alpha) d\theta
\]

Thus

\[
\frac{I_2}{D(x^{(a,\tau_0)}_0|\alpha)D(x^{(a,\tau_0)}_0|\alpha)} \leq \frac{p^{(a,\tau_0)}(\theta_2) \exp\left\{ \sum H_\delta(x_0, \theta_2) \right\}}{\int_{\Theta} p^{(a,\tau_0)}(\theta) \pi(\theta|\alpha) d\theta} \tag{A.5}
\]

Note that \(p^{(a,\tau_0)}(\theta) \) is a product of up to \(B \) i.i.d. random variables and \(\sum H_\delta(x_0, \theta_2) \) is a sum of up to \(B \) i.i.d. random variables. \(B \) is finite. The right hand side of (A.5) is, therefore, bounded in probability. This gives (A.2). \(\square \)

The proof of (iii) is essentially identical to that of (ii).

Proof of Lemma 3.1. First, let us consider the case of \(m = 1 \).

\[
\frac{P(x|\{0, \tau_1, 1\})}{P(x|\{0, 1\})} = \frac{D(x_{(0,\tau_1)}|\alpha)D(x_{(\tau_1, 1)}|\alpha)}{D(x_{(0,1)}|\alpha)}.
\]

Lemma 2(i) tells us that it is \(O_p\left(n^{1/2}_{(0,1)}/n^{(\tau_1,1)}_{(\tau_1,1)} \right) \). But \(n^{(\tau_1,1)}_{(\tau_1,1)}/n^{2}_{(0,\tau_1)}C(\tau_1,1) \to 1 \) by regularity condition 3, it follows that

\[
\frac{P(x|\{0, \tau_1, 1\})}{P(x|\{0, 1\})} = O_p\left(1/ \sqrt{nC(\tau_1,1)} \right) = O_p(1/ \sqrt{n\Delta}).
\]

Next, suppose that the lemma holds for all \(m \leq M, (M > 1) \). Then for \(m = M + 1 \),

\[
\frac{P(x|\{0, \tau_1, \ldots, \tau_M, 1\})}{P(x|\{0, 1\})} = \frac{P(x|\{0, \tau_2, \ldots, \tau_M, 1\})P(x|\{0, \tau_1, \ldots, \tau_M, 1\})}{P(x|\{0, 1\})P(x|\{0, \tau_2, \ldots, \tau_M, 1\})}.
\]
By the induction assumption, \(P(x|\{0, \tau_2, \cdots, \tau_M, 1\})/P(x|\{0, 1\}) \xrightarrow{P} 0. \) Note that
\[
P(x|\{0, \tau_1, \cdots, \tau_M, 1\}) = \frac{D(x_{(0,\tau_1)}|\alpha)D(x_{(\tau_1,\tau_2)}|\alpha)}{D(x_{(0,\tau_2)}|\alpha)}.
\]
 Lemma A.2(i) again tells us that the above expression converges to 0 in probability. Therefore, the lemma is also true for \(m = M + 1: P(x|\{0, \tau_1, \cdots, \tau_M, 1\})/P(x|\{0, 1\}) = O_p(1/\sqrt{n\Delta}) \). □

PROOF of Lemma 3.2. We need only to prove this lemma for \(m_0 = 2 \); the rest can be proved using the same mathematical induction technique as in the proof of Lemma 3.1. We have

\[
P(x|\{0, 1\}) = \frac{D(x_{(0,\tau_1)}|\alpha)}{D(x_{(0,\tau_1^0)}|\alpha)D(x_{(\tau_1^0,1)}|\alpha)}.
\]

Taking \(a_n \equiv 0 \) and \(b_n \equiv 1 \) in Lemma A.3(i), we know from its proof that

\[
\frac{D(x_{(0,\tau_1)}|\alpha)}{D(x_{(0,\tau_1^0)}|\alpha)D(x_{(\tau_1^0,1)}|\alpha)} = O_p(n^{1/2}\exp\{-n(\tau_1^0)k_1(\delta)\}) = O_p(n^{1/2}\exp\{-n(\tau_1^0)k_2(\delta)\}).
\]

Condition 3 suggests that \(O_p(\sqrt{n(\tau_1^0)}\exp\{-n(\tau_1^0)k_2(\delta)\}) = O_p(\sqrt{n\Delta}\exp(-cn\Delta)) \), for positive constant \(c \), and so does \(O_p(\sqrt{n(\tau_1^0)}\exp\{-n(\tau_1^0)k_1(\delta)\}) \). We thus prove the lemma for \(m_0 = 2 \). □

PROOF of Theorem 3.3. Our proof consists of three steps. Step 1. Let \(E_1 \) be the event that there is at least one true change-point \(\tau_j^0 \) \((0 \leq j \leq m_0)\) that no estimated change-point is within \(\Delta/2 \) of it, i.e., \(\hat{\tau}_j \not\in (\tau_j^0 - \Delta/2, \tau_j^0 + \Delta/2) \) for all \(i \). We will show that the probability of \(E_1 \) goes to 0.

Suppose \(\hat{\tau} \) is such an estimate. Let \(\hat{\tau}_i \) and \(\hat{\tau}_{i+1} \) be the estimated change-points that sandwich \(\tau_j^0 \): \(\hat{\tau}_i < \tau_j^0 < \hat{\tau}_{i+1} \). Let \(\tau_j^0 < \cdots < \tau_j^{r_j} \) be the sequence of true change-points \((l, r \geq 0)\) that are between \(\hat{\tau}_i \) and \(\hat{\tau}_{i+1} \)

\[
\tau_j^0 < \cdots < \tau_j^{r_j} < \cdots < \tau_j^{r_j}.
\]

Consider an alternative choice of change-points

\[
\bar{\tau} = \{\hat{\tau}_0, \hat{\tau}_1, \cdots, \hat{\tau}_i, \tau_j^0, \hat{\tau}_i, \cdots, \hat{\tau}_n\},
\]

which is formed by inserting \(\tau_j^0 < \cdots < \tau_j^{r_j} \) into \(\hat{\tau} \). It is clear that
\[
P(x|\bar{\tau}) = \frac{D(x(\hat{\tau}_i,\hat{\tau}_{i+1})|\alpha)}{D(x(\hat{\tau}_i,\tau_j^0)|\alpha)}D(x(\tau_j^0,\tau_j^0)|\alpha)D(x(\tau_j^0,\tau_j^{r_j})|\alpha)D(x(\tau_j^{r_j},\tau_j^{r_j})|\alpha).
\]

Since \(n(\hat{\tau}_i,\tau_j^0) \to \infty \), \(n(\tau_j^0,\hat{\tau}_{i+1}) \to \infty \) and \(n(\tau_j^{r_j},\tau_j^{r_j}) \to \infty \) (for any \(k \)) by condition 5, it follows from Lemma A.3 that the ratio \(P(x|\bar{\tau})/P(x|\bar{\tau}) \) would go to zero in probability. Another way to look at it is to think of \(\bar{\tau} \) as being created by inserting the true change-points one at a time from the left. The first and last insertions would have probability contribution of \(O_p(1) \) by Lemma A.3, while the
middle ones would have probability contribution $o_p(1)$ by Lemma 3.2. Therefore, the probability of having such an estimate $\hat{\tau}$ goes to zero, i.e., the probability of \mathcal{E}_1 goes to zero. This in fact proves equation (3.1), since $\Delta/2 \to 0$ by condition 5.

Step 2. The previous step tells us that, with probability going to one, for each true change-point τ^0_j, there would be at least one estimated change-point $\hat{\tau}_i$ such that $|\hat{\tau}_i - \tau^0_j| < \Delta/2$. On the other hand, since $\hat{\tau}_{i+1} - \hat{\tau}_i \geq \Delta$ by the definition, we know that there cannot be two estimated change-points within $(\tau^0_j - \Delta/2, \tau^0_j + \Delta/2)$. Hence, with probability going to one, for each true change-point τ^0_j, there would be one and only one estimated change-point $\hat{\tau}_i$ such that $|\hat{\tau}_i - \tau^0_j| < \Delta/2$.

Step 3. In order to establish $\hat{m} \xrightarrow{P} m_0$, it remains to show that, with probability going to one, the union of $\bigcup_j (\tau^0_j - \Delta/2, \tau^0_j + \Delta/2)$ contains all the estimated change-points. Suppose $\hat{\tau}_i$ is outside the union. Let τ^0_j and τ^0_{j+1} be the adjacent true change-points that sandwich $\hat{\tau}_i$: $\tau^0_j < \hat{\tau}_i < \tau^0_{j+1}$. We must have $\hat{\tau}_i - \tau^0_j \geq \Delta/2$ and $\tau^0_{j+1} - \hat{\tau}_i \geq \Delta/2$. From Steps 1 and 2, we know that with probability going to one, there are two estimated change-points of which one is within $\Delta/2$ of τ^0_j and the other is within $\Delta/2$ of τ^0_{j+1}. Let $\hat{\tau}_{i-l} < \cdots < \hat{\tau}_{i+r}$ be the sequence of estimated change-points $(l, r \geq 0)$ that are between τ^0_j and τ^0_{j+1}:

$$\tau^0_j < \hat{\tau}_{i-l} < \cdots < \hat{\tau}_{i+r} < \tau^0_{j+1}$$

Consider the following alternative change-points:

$$\tilde{\tau} := \hat{\tau} - \{\hat{\tau}_{i-l}, \ldots, \hat{\tau}_{i+r}\} = \{\tau_0, \tau_1, \ldots, \tau_{i-l-1}, \tau_{i+r+1}, \ldots, \tau_m\}.$$

We can think of $\tilde{\tau}$ as being created by deleting from $\hat{\tau}$ the estimated change-points one at a time starting from $\hat{\tau}_{i-l}$. According to Lemma A.2, deleting $\hat{\tau}_{i-l}$ and $\hat{\tau}_{i+r}$ would have probability contribution of either $O_p(1)$ or $o_p(1)$, while deleting the middle ones would have probability contribution of $o_p(1)$, since $\hat{\tau}_{k+1} - \hat{\tau}_k \geq \Delta$ by the definition and $n\Delta \to \infty$. It follows that the ratio $P(\mathbf{x}|\hat{\tau})/P(\mathbf{x}|\tilde{\tau})$ would go to zero in probability. Therefore, the probability of having a $\hat{\tau}_i$ outside the union of $\bigcup_j (\tau^0_j - \Delta/2, \tau^0_j + \Delta/2)$ goes to zero. This concludes our proof. □

Proof of Corollary 3.4. Since in the proof of Theorem 3.3 the only place that $\pi(\theta|\alpha)$ appears is in Lemma A.1 (iv), for the proof we only need to show that

$$D(x_{(a,b)}|\hat{\alpha}_n) \xrightarrow{P} (2\pi)^{1/2}\pi(\theta_0|\alpha^*).$$ \hspace{1cm} (A.6)$$

To do so, let $N(\delta)$ be a neighborhood of θ_1. Then, we have

$$D(x_{(a,b)}|\hat{\alpha}_n) = \int_{N(\delta)} p(a,b)(\theta)\pi(\theta|\hat{\alpha}_n)d\theta + \int_{\Theta - N(\delta)} p(a,b)(\theta)\pi(\theta|\hat{\alpha}_n)d\theta.$$
For the first term, since $\pi(\theta|\alpha)$ is continuous at α^*, and $\hat{\alpha}_n \xrightarrow{P} \alpha^*$, we have,

$$
\int_{N(\delta)} p(a,b)(\theta) \pi(\theta|\hat{\alpha}_n) d\theta = \int_{N(\delta)} p(a,b)(\theta) \frac{\pi(\theta|\hat{\alpha}_n)}{\pi(\theta|\alpha^*)} \pi(\theta|\alpha^*) d\theta = (1 - o_p(1)) \int_{N(\delta)} p(a,b)(\theta) \pi(\theta|\alpha^*) d\theta.
$$

For the second term, by Lemma A.1 (i) and a similar analogue to Lemma A.3, one could show that

$$(p(a,b)(\hat{\theta}(a,b))\hat{\sigma}(a,b))^{-1} \int_{\Theta - N(\delta)} p(a,b)(\theta) \pi(\theta|\hat{\alpha}_n) d\theta = o_p(1).$$

Similarly, we have

$$(p(a,b)(\hat{\theta}(a,b))\hat{\sigma}(a,b))^{-1} \int_{\Theta - N(\delta)} p(a,b)(\theta) \pi(\theta|\alpha^*) d\theta = o_p(1).$$

Combining them, we know that replacing $\hat{\alpha}_n$ by α^* does not change the asymptotics of the left hand side of (A.6), that is,

$$(p(a,b)(\hat{\theta}(a,b))\hat{\sigma}(a,b))^{-1} D(x(a,b)|\hat{\alpha}_n) = (p(a,b)(\hat{\theta}(a,b))\hat{\sigma}(a,b))^{-1} D(x(a,b)|\alpha^*) + o_p(1) = (2\pi)^{1/2} \pi(\theta_0|\alpha^*) + o_p(1)$$

This completes the proof. \(\square \)

References