BAYESIAN VERIFICATION MEASURES for FORECASTS of CONTINUOUS PREDICTANDS

By

Roman Krzysztofowicz
University of Virginia

Presented at the
18th Conference on Probability and Statistics
in the Atmospheric Sciences
Atlanta, Georgia

29 January – 2 February 2006

Acknowledgments:

Work supported by the National Science Foundation under Grant No. ATM–0135940.
Data provided by the Meteorological Development Laboratory of the National Weather Service.
BAYESIAN THEORY
OF FORECAST VERIFICATION

Forecast
• provides information for decision making
• reduces uncertainty about a predictand
• has economic value

Attributes

“Can the forecast be taken at its face value?”

CALIBRATION – necessary for consistent interpretability
 – attainable through a transformation (re-calibration)

“Does the forecast reduce the uncertainty?”

INFORMATIVENESS – necessary for positive economic value
 – intrinsic to the forecast system
DECISION-THEORETIC EVALUATION

VARIATES: Predictand W, $w \in \mathcal{W}$
Forecast X, $x \in \mathcal{X}$

FORECAST-DECISION SYSTEM

likelihood $f(x|w)$
prior $g(w)$
utility $u(a, w)$

BAYESIAN RATIONALITY

Bayes utility of forecaster for decision maker

$$U(g, u) = \int \left[\max_{\mathcal{X}} \int_{\mathcal{W}} u(a, w) f(x|w) g(w) \, dw \right] dx$$

COMPARISON

likelihood Bayes utility
Forecaster X $f_X(x|w)$ $U_X(g, u)$
Forecaster Y $f_Y(y|w)$ $U_Y(g, u)$
THEORY OF SUFFICIENT COMPARISONS

DEFINITION

X is more informative than Y if

\[U_X(g, u) \geq U_Y(g, u) \quad \forall g, u \]

(for every rational decision maker)

DEFINITION

X is sufficient for Y if there exists a stochastic transformation \(\psi \) such that

\[f_Y(y|w) = \int \ldots \int \psi(y|x)f_X(x|w) \, dx \quad \forall y, w \]

THEOREM (Blackwell, 1951)

If X is sufficient for Y,
then X is more informative than Y.
META-GAUSSIAN LIKELIHOOD

If f_X, f_Y meta-Gaussian (or Gaussian), then

• analytic solution for ψ

• algebraic condition for existence of ψ

• if deterministic forecast $x = (x_1)$
 or probabilistic forecast $x = (x_1, x_2)$
 then there exists

 sufficiency characteristic, SC, …

THEOREM (Krzysztofowicz, 1987; Long, 1990)

$SC_X > SC_Y \iff X$ sufficient for Y

$\implies X$ more informative than Y
DETERMINISTIC FORECAST

DISTRIBUTIONS

Predictand $G(w)$
Forecast $K(x)$

NORMAL QUANTILE TRANSFORM (NQT)

$$V = Q^{-1}(G(W))$$
$$Z = Q^{-1}(K(X))$$

LINEAR REGRESSION

$$E(Z|V = v) = av + b$$
$$Var(Z|V = v) = \sigma^2$$

SUFFICIENCY CHARACTERISTIC

$$SC = \frac{a^2}{\sigma^2}$$

“signal”

“noise”

(uninformative) $0 \leq SC \leq \infty$ (clairvoyant)
DETERMINISTIC FORECAST

INFORMATIVENESS SCORE

\[
IS = \left[\frac{1}{SC} + 1 \right]^{-\frac{1}{2}}
\]

\[
IS = \left[\frac{\sigma^2}{a^2} + 1 \right]^{-\frac{1}{2}}
\]

(uninformative) \(0 \leq IS \leq 1\) (clairvoyant)

PROPERTIES

1. Interpretable as “Rank Correlation” between \(X\) and \(W\)

2. Orders forecasters consistently with *Bayes Utility* (or *Economic Value*)

3. Meaningful for cross-comparisons
KUIL 12-36h, Cool

W - Precip. Amount, when W > 0

X - Model Estimate, when W > 0

\[\rho = 0.613 \]

\[IS = 0.631 \]

\[a = 0.681 \]

\[b = 0.028 \]

\[\sigma = 0.829 \]
PROBABILISTIC FORECAST

FORECAST: \(\mathbf{X} = (X_1, X_2) \)

\(X_1 \) — median of \(W \)

\(X_2 \) — width of the 50% central credible interval

INFORMATIVENESS SCORE

\[IS = \ldots \]

PROPERTIES

1. Interpretable as “Rank Correlation” between \((X_1, X_2)\) and \(W \)

2. Orders consistently forecasters: deterministic versus probabilistic

\[IS_{X_1} \leq IS_{(X_1, X_2)} \]