BAYESIAN PROBABILISTIC QUANTITATIVE PRECIPITATION FORECASTS

By

Coire J. Maranzano and Roman Krzysztofowicz

University of Virginia

Poster Presentation at 18th Conference on Probability and Statistics in the Atmospheric Sciences 86th Annual Meeting of the American Meteorological Society Atlanta, Georgia, 29 January – 2 February 2006

Corresponding author: Professor Roman Krzysztofowicz University of Virginia P.O. Box 400747 Charlottesville, VA 22904-4747 Tel: 434-982-2067, Fax: 434-982-2972 Email: rk@virginia.edu

Acknowledgments: Work supported by the National Science Foundation under Grant No. ATM-0135940.

Data provided by the Meteorological Development Laboratory of the National Weather Service.
Bayesian Processor of Output (BPO) for Probabilistic Quantitative Precipitation Forecasting

APPRAOCH

- Theoretically based technique
- Processes Numerical Weather Prediction (NWP)
- Optimally fuses climatic data with NWP model outputs
- Quantifies the uncertainty about weather variates
 - Binary predictands
 - Multi-category predictands
 - Continuous predictands

PRODUCTS

- \(W \) — precipitation amount (binary-continuous) \(W \geq 0 \)
- \(X \) — vector of predictors \(X = (X_1, \ldots, X_I) \)

PoP: Probability of Precipitation Occurrence

\[
\pi = P(W > 0 | X = x)
\]

DoA: Distribution of Precipitation Amount, Conditional on Occurrence

\[
\Phi(w) = P(W \leq w | X = x, W > 0), \quad w \geq 0
\]

PQPF: Probabilistic Quantitative Precipitation Forecast

\[
P(W \leq w | X = x) = (1 - \pi) + \pi \Phi(w), \quad w \geq 0
\]

THEORY

<table>
<thead>
<tr>
<th>Density Function</th>
<th>Model</th>
<th>Forecasting Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(w))</td>
<td>prior (input)</td>
<td>univariate of any form</td>
</tr>
<tr>
<td>(f(x</td>
<td>w) = p(x</td>
<td>W = w))</td>
</tr>
<tr>
<td>(\kappa(x))</td>
<td>expected (output)</td>
<td>(l)-variate meta-Gaussian</td>
</tr>
<tr>
<td>(\phi(w) = p(w</td>
<td>X = x))</td>
<td>posterior (output)</td>
</tr>
</tbody>
</table>

\[
\kappa(x) = \int_{-\infty}^{\infty} f(x|w) g(w) \, dw
\]

\[
\phi(w) = \frac{f(x|w)}{\kappa(x)} g(w)
\]

ADVANTAGES

- The PQPF
 - continuous distribution function for \(W > 0 \)
 - guaranteed to be well calibrated against the prior (climatic) distribution function
- The BPO
 - has correct theoretic structure
 - is more parsimonious than MOS
 - is easily extended to ensemble forecasting
Example: Distribution of Amount (DoA)

Station: Quillayute, WA
Season: Cool
Lead time: 12 h after 0000 UTC
Date: 21 February 2002
Date: 21 February 2002
Forecast Period: 24 h
Actual Precip. Amount: 101.85 mm

Predictors

BPO: 3 predictors; 15 parameters
24-H TOTAL PRECIP. ending 36 h \(x_1 = 30.2\)
850 REL. VORTICITY at 24 h \(x_2 = 4.8\)
700 VERTICAL VELOCITY at 12 h \(x_3 = -0.95\)

Forecast

BPO: function
- continuous
- meta-Gaussian
- closed-form

MOS: 15 predictors; 80 parameters (5 catego.)

12-H TOTAL PRECIP. GB (6.35 mm) ending 24 h
12-H TOTAL PRECIP. GB (25.4 mm) ending 24 h
12-H TOTAL PRECIP. GB (0.254 mm) ending 36 h
24-H TOTAL PRECIP. GB (2.54 mm) ending 24 h
24-H CONV. PRECIP. GB (0.254 mm) ending 36 h
850 REL. VORTICITY at 12 h
850 REL. VORTICITY at 24 h
700 VERTICAL VELOCITY GB (-0.9) at 24 h
700 VERTICAL VELOCITY GB (-0.5) at 12 h
LATITUDE, LONGITUDE, ELEVATION

Bayesian Revision

Distribution Functions

Prior (climatic)

NWP Model Output
\(W_{\text{Weibull}}(\alpha = 0.52, \beta = 0.88)\)

Posterior

\(x = (30.2, 4.8, -0.95)\)

Density Functions

Prior (climatic)

NWP Model Output
\(W_{\text{meta-Gaussian}}(\alpha = 0.52, \beta = 0.88)\)

Posterior

\(x = (30.2, 4.8, -0.95)\)

Hypothetical Forecasts of an Extreme

Actual \(x_1 = 30.2\)

Hypothetical \(x_1 = 60.0\)

Hypothetical \(x_1 = 90.0\)

Hypothetical \(x_1 = 120.0\)
Example: Distribution of Amount (DoA)

Station: Buffalo, NY
Season: Cool
Lead time: 36 h after 0000 UTC
Date: 30 January 2002
Forecast Period: 6 h
Actual Precip. Amount: 21.84 mm

Predictors

BPO: 2 predictors; 10 parameters
- 6-H TOTAL PRECIP, ending 42 h \(x_1 = 11.2\)
- 500 VERTICAL VELOCITY at 36 h \(x_2 = -0.55\)

MOS: 13 predictors; 42 parameters (3 catego.)
- 6-H TOTAL PRECIP, GB (2.54 mm) ending 42 h
- 6-H TOTAL PRECIP, GB (6.35 mm) ending 42 h
- 500 VERTICAL VELOCITY GB (-0.9) at 42 h
- 6-H PRECIP, WATER ending 42 h
- 925 VERTICAL VELOCITY GB (-0.2) at 33 h
- 3-H TOTAL PRECIP, GB (6.35 mm) ending 39 h
- 850 VERTICAL VELOCITY GB (-0.5) at 45 h
- 700 VERTICAL VELOCITY GB (-0.9) at 36 h
- 700 VERTICAL VELOCITY GB (-1.2) at 36 h
- 925 VERTICAL VELOCITY GB (-0.1) at 39 h
- 500 VERTICAL VELOCITY GB (-0.5) at 42 h
- 500 VERTICAL VELOCITY GB (-1.2) at 39 h
- ELEVATION

Forecast

BPO: function
- continuous
- meta-Gaussian
- closed-form

MOS: 3 points
- Ad-hoc extrapolation needed

Bayesian Revision

Distribution Functions

Prior (climatic)
NWP Model Output \(x = (11.2, -0.55)\)

Density Functions

Posterior

Prior (climatic)

NWP Model Output \(x = (11.2, -0.55)\)

Uncertainty Quantification

AVN model: Grossly underestimates the precipitation amount

MOS system: Categories inadequate to characterize uncertainty
- Ad-hoc extrapolation needed

BPO system: Complete characterization of uncertainty — continuous DoA
- Guaranteed calibration against prior distribution
- Simpler predictors: direct NWP model output (no Grid-Binary)
- Fewer predictors and parameters