Tides

• Newton's gravitational force law says that the force of gravitation attraction depends strongly on the separation between two objects.

• The same applies to different portions of an extended object like the Earth or the Moon.
Tides

- The Earth (and the more flexible oceans) are stretched between these differing forces raising tidal bulges both toward and away from the Moon.

\[F_{gravity} = \frac{Gm_1 m_2}{R^2} \]
Tides

- The Earth (and the more flexible oceans) are stretched between these differing forces raising tidal bulges both toward and away from the Moon.

Too much pull – Earth is stretched toward the Moon.

Too little pull – Earth bulges away from the Moon.
Tides

- The more-flexible water gets stretched more than the solid Earth.
 - These ocean tides remain aligned with the Moon while the solid Earth rotates through them.
 - Locations typically experience two high tides a day.
 - Tides are more complicated because of the sloshing due to land-masses getting in the way.
Bay of Fundy, Canada
An Alternative View of Tides

• Objects orbit their common center of gravity (technically the “barycenter” of their orbit).

![Diagram showing the balance between gravitational and centrifugal forces]

• Tides are all about the balance between gravity and centrifugal force – like a ball on a string.
 • These forces balance at the center of the Earth.
 - Closer to the Moon the Moon's gravity wins – extra tugging
 - Farther from the Moon the Moon's gravity is insufficient to counter the centrifugal force – extra “flinging”
 • The Earth gets stretched between these two forces.
The Sun's Role in Tides

• The Sun also has significant gravitational influence on the Earth.
 • It is much further away than the Moon, but also much more massive.
 • Solar tides are about 1/3 the strength of Lunar tides.
• When the Sun and Moon align (New and Full Moon) tides are higher than when they raise tides in different directions (First and Last Quarter Moon).
The Sun's Role in Tides

- The Sun also has significant gravitational influence on the Earth.
 - It is much further away than the Moon, but also much more massive.
 - Solar tides are about 1/3 the strength of Lunar tides.
- When the Sun and Moon align (New and Full Moon) tides are higher than when the raise tides in different directions (First and Last Quarter Moon).

Note that planetary tides, often invoked by nutcase theories of global doom from planetary alignment, are vanishingly insignificant compared to the Sun and Moon.

Jupiter's tidal force on Earth is 1/100,000th that of the Sun's.
Tides and the Slowing of Earth's Rotation

- Since the Earth spins faster than the Moon orbits
 - the Earth tries to drag its tidal bulges out of line with the Moon
 - the Moon, in turn, tries to pull them back into alignment.
 - The consequence is that Earth rotation is slowing and the Moon is getting farther from the Earth.
Yellow arrows = bulk gravitational attraction between Earth and Moon
• Focus on the “near” tidal bulge – it feels a slightly greater force than the “far” one.

• The green arrows represent the gravitation pull between the Moon and the material in this tidal bulge.

• The direction of this pull works **against** the direction of Earth's rotation, slowing down the rotation of the Earth.
• The pull of the tidal bulge on the Moon can be decomposed into a component directed toward the center of the Earth and a component directed along the Moon's orbit.

• The component directed along the Moon's orbit gives the Moon a boost as if it had a rocket engine attached – moving it further from the Earth over time.
The Changing Day

• Due to tidal effects the day gets about 1 second longer every 50,000 years.
 • About 300 million years ago the day was only 22 hours long.
 • The day will be 25 hours long in another 150 million years.

• The second was defined using measurements from more than 200 years ago.
 • Using this “stale” second, The Earth runs slow enough that we have to add a leap second into timekeeping every couple of years.
Consequences for the Moon

• Tidal coupling moves the Moon a few centimeters further from the Earth each year.

• Although small, this effect is measured to great accuracy with pulses of laser light bounced off of retro-reflectors on the Moon.
Consequences for the Moon

• Tidal coupling moves the Moon a few centimeters further from the Earth each year.
 • The Moon was once much closer – maybe 1/20^{th} it's current distance.
 • We live in the last era where total solar eclipses are possible.
 – Total eclipses are becoming increasingly less frequent.
 – soon (in about 100 million years) all central eclipses will be annular.
Consequences for the Moon

- Tidal coupling moves the Moon a few centimeters further from the Earth each year.
- The Moon was once much closer – maybe 1/20th its current distance.
- We live in the last era where total solar eclipses are possible.
 - Total eclipses are becoming increasingly less frequent.
 - Soon (in about 100 million years) all central eclipses will be annular.
Consequences for the Moon

- The Moon's rotation has “stopped” relative to the Earth
 - The Earth was even more effective at slowing the Moon's rotation.
 - Although it may have originally spun rapidly, the Moon is now in a state where it turns at the same rate that it orbits the Earth.
Consequences for the Moon

- The Moon's rotation has “stopped” relative to the Earth
 - This “tidal locking” is the natural end state of a planet/moon system.
 - Even now, the Moon is slowing the Earth's rotation toward the goal of the Earth always keeping the same face toward the Moon.
 - Once an object is in “synchronous rotation” it's tidal bulges remain aligned and there is no more tidal friction.
Consequences for the Moon

- From Earth we can only see one side of the Moon.
The Dark Far Side of the Moon

- From Earth we can only see one side of the Moon.
 - The other side of the Moon (which has 2-week long days just like the near side) was not observed until the Space Age.
Lockheed Martin Proposes Manned Mission to the Dark Side of the Moon

By Clay Dillow Posted 11.23.2010 at 5:31 pm 30 Comments